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Abstract. We prove the nonexistence of Liouvillian first integrals for the generalized
Liénard polynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where

g(x) and f(x) are arbitrary polynomials such that deg g = deg f + 1.

1. Introduction and statement of the main result

One of the more classical problems in the qualitative theory of planar differential systems
depending on parameters is to characterize the existence or not of first integrals.

We consider the system

(1) x′ = y, y′ = −g(x)− f(x)y,

called the generalized Liénard differential system, where x and y are complex variables
and the prime denotes derivative with respect to the time t, which can be either real or
complex. Such differential systems appear in several branches of the sciences, such as biology,
chemistry, mechanics, electronics, etc. For g(x) = x the Liénard differential systems (1) are
called the classical Liénard systems. In MathScinet now it appears more than 450 articles
published such that in their title appears the words “Liénard system”.

Let U ⊂ C2 be an open set. We say that the non–locally constant function H : C2 → C
is a first integral of the polynomial vector field X on U , if H(x(t), y(t)) = constant for all
values of t for which the solution (x(t), y(t)) of X is defined on U . Clearly H is a first
integral of X on U if and only if XH = 0 on U .

A Liouvillian first integral is a first integral H which is a Liouvillian function, that is,
roughly speaking which can be obtained “by quadratures” of elementary functions. For a
precise definition see [15]. The study of the Liouvillian first integrals is a classical problem
of the integrability theory of the differential equations which goes back to Liouville, see for
details again [15].

As far as we know all the Liouvillian first integrals of some multi-parameter family of
planar polynomial differential systems has only been classified for the Lotka-Volterra system,
see [1, 7, 11, 12, 13, 14].

The main objective of this paper is to study the Liouvillian first integrals of systems (1)
depending on the polynomial functions f(x) and g(x). We denote by m and n the degrees of
g and f , respectively. The Liouvillian integrability for the generalized Liénard polynomial
differential systems has been studied when

(i) m = 1 and n is arbitrary (see Theorem 1 done in [9]), and
(ii) 2 ≤ m ≤ n with m and n arbitrary (see Theorem 2 done in [10]).
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Theorem 1 ([9]). The unique Liouvillian first integrals H = H(x, y) of the Liénard poly-
nomial differential system

x′ = y, y′ = −cx− f(x)y.

are:

(a) H = cx2 + y2 if f(x) = 0;
(b) H = y +

∫
f(x) dx if c = 0;

(c) H = H =
(1
2
(1−

√
1 + 4α)x+ y

)−1+
√
1+4α(1

2
(1 +

√
1 + 4α)x+ y

)1+√
1+4α

with

α = −c/f(0)2 if f(x) = f(0) ̸= 0; and

(d) H = ef
′(0)2x2+2f ′(0)y(c+ f ′(0)y)−2c if f(x) = f ′(0)x ̸= 0.

Theorem 2 ([10]). The unique Liouvillian first integrals H = H(x, y) of the generalized
Liénard polynomial differential system (1) with 2 ≤ m ≤ n are H = (a + y)e−(y+F (x))/a if
g(x) = af(x) where a ∈ C \ {0}.

Clearly, for completing the study of the Liouvillian integrability for the generalized
Liénard polynomial differential systems it remains to study the case

(iii) n+ 1 ≤ m with m and n arbitrary.

We recall the notion of invariant algebraic curve. Let h(x, y) ∈ C[x, y] \ C. As usual
C[x, y] denotes the ring of all complex polynomials in the variables x and y. We say that
v = 0 is an invariant algebraic curve of the vector field X associated to system (1) if it
satisfies

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= Kh,

the polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of h = 0 and has degree at most
n.

When m > n + 1 and n is arbitrary, it is unknown the characterization of the invariant
algebraic curves of the generalized Liénard polynomial differential systems. This character-
ization is necessary for studying the existence of Liouvillian first integrals for this class of
polynomial differential systems.

For m = n + 1 and n arbitrary Hayashi in [6] has characterized the invariant algebraic
curves for the generalized Liénard polynomial differential systems as follows.

Proposition 3 ([6]). System (1) with deg g = deg f + 1 has an invariant algebraic curve
h = h(x, y) if and only if h = y − P (x) and P satisfies g(x) = −(f(x) + P ′(x))P (x) where:

(a) either P (x) has degree one,

(b) or P (x) is such that P (x) +

∫
f(x) dx is a polynomial of degree one.

In both cases the cofactor K of h is K = −f(x)− P ′(x).

Proposition 3 allows to classify in this paper the existence or non–existence of Liouvillian
first integrals for the generalized Liénard polynomial differential systems satisfyingm = n+1
and n arbitrary. Thus our main result is.

Theorem 4. There are no Liouvillian first integrals for the generalized Liénard polynomial
differential system (1) with 2 ≤ deg g = deg f + 1.

The proof of Theorem 4 is given in section 2.

2. Proof of Theorem 4

For proving Theorem 4 we need some preliminary results.

If h(x, y) = 0 with h(x, y) ∈ C[x, y] \ C is an invariant algebraic curve, then h is called
a Darboux polynomial of system (1). Note that a polynomial first integral is a Darboux
polynomial with zero cofactor.
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The Darboux polynomials are important because a sufficient number of them forces the
existence of a first integral. This result is the basis of the Darboux theory of integrability,
see for instance [4, 8].

An exponential factor E of system (1) is a function of the form E = eu/v ̸∈ C with
u, v ∈ C[x, y] satisfying that

(2) y
∂E

∂x
− (g(x) + f(x)y)

∂E

∂y
= LE,

for some polynomial L = L(x, y) of degree at most n, called the cofactor of E.

Proposition 5. The following statements hold.

(a) If E = exp(u/v) is an exponential factor for the polynomial differential system (1)
and v is not a constant polynomial, then v = 0 is an invariant algebraic curve.

(b) Eventually E = exp(u) can be exponential factors coming from the multiplicity of
the infinite invariant straight line.

The following result given in [3] characterizes the algebraic multiplicity of an invariant
algebraic curve using the number of exponential factors of system (1) associated with the
invariant algebraic curve.

Proposition 6. Given an irreducible invariant algebraic curve v = 0 of degree k of system
(1), it has algebraic multiplicity d if and only if the vector field associated to system (1)
has d − 1 exponential factors exp(ui/v

i) where ui is a polynomial of degree at most ik and
(ui, v) = 1 for i = 1, . . . , d− 1.

In view of Proposition 6 if we prove that eu/v is not an exponential factor with degu ≤
deg v, there are no exponential factors associated to the invariant algebraic curve v = 0.
The existence of exponential factors exp(u/v) is due to the fact that the multiplicity of the
invariant algebraic curve v = 0 is larger than 1, for more details see [3].

In 1992 Singer [15] proved that a polynomial differential system has a Liouvillian first
integral, if and only if it has an inverse integrating factor of the form

(3) e

(∫
U1(x, y)dx+

∫
U2(x, y)dy

)
where U1 and U2 are rational functions which verify ∂U1/∂y = ∂U2/∂x. In 1999 Christopher
[2] improved the results of Singer showing that the inverse integrating factor (3) can be
written in the form

(4) eu/v
k∏

i=1

hλi
i

where u, v and hi are polynomials and λi ∈ C.
From (4) and the Darboux theory of integrability (see [5, 8]) we have the following result.

Theorem 7. The polynomial differential system (1) has a Liouvillian first integral if and
only if system (1) has an integrating factor of the form (4), or equivalently there exist p
invariant algebraic curves hi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors
Ej = euj/vj with cofactors Lj for j = 1, . . . , q and λj , µj ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = −divergence of (1) = f(x).
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In short, for proving Theorem 4 we need to characterize the Darboux polynomials and
the exponential factors of system (1). We start with some preliminaries. We write

(5) f(x) =

n∑
j=0

ajx
j and hence F (x) =

n∑
j=0

aj
j + 1

xj+1, g(x) =

n+1∑
j=0

bjx
j

with n ≥ 1.

The first result that we will prove is the following.

Proposition 8. Systems (1) with 2 ≤ m = n + 1 has the exponential factors ex
k

with
cofactors kxk−1y for k = 1, . . . , n.

Proof. In view of Proposition 3 system (1) has an irreducible Darboux polynomial h =
y − P (x) if and only if g(x) = −(f(x) + P ′(x))P (x) with P (x) either of degree one or

P (x) +

∫
f(x) dx of degree one. Hence, from Proposition 6 if we prove that there are

no exponential factors of the form eu/h with u and h coprime, then the unique possible
exponential factors would be of the form eu with u ∈ C[x, y] \ C.

Let E = exp(u/h) with u = u(x, y) of degree at most one and coprime with h. We write
P (x) = α0+α1x with α0, α1 ∈ C and g(x) = −(f(x)+α1)(α0+α1x). If u = γ0+γ1x+γ2y
with γi ∈ C, i = 0, 1, 2, then equation (2) becomes

γ0(α1+f(x))+γ1(α1x+y+xf(x))+γ2
(
α0α1+α2

1x+α1y+(α0+α1x)f(x)
)
= L(y−α0−α1x),

where L = L(x, y) is a polynomial of degree n. Evaluating it on y = α0 + α1x we get

(6) γ0(α1 + f(x)) + γ2(α0 + α1x)(2α1 + f(x)) + γ1(α0 + 2α1x+ xf(x)) = 0.

The coefficient of degree n+ 1 in equation (6) becomes

an(γ1 + α1γ2) = 0, that is, γ1 = −α1γ2.

Then (6) becomes

(f(x) + α1)(γ0 + γ2α0) that is γ0 = −α0γ2.

Hence,

u = −α0γ2 − α1γ2x+ γ2y = γ2(y − α0 − α1x),

which is not possible since u and y − P (x) = y − α0 − α1x are coprime.

Let E = exp(u/(y−P (x)) with u = u(x, y) of degree at most n+1 and g(x) = −(f(x)+
P ′(x))P (x) with P (x) = −

∫
f(x) dx + β0 + β1x with β0, β1 ∈ C. We also assume that u

and y − P (x) are coprime. In this case equation (2) becomes

y
∂u

∂x
− (f(x)y − f(x)P (x)− P ′(x)P (x))

∂u

∂y
+ β1u = L

(
y − β0 − β1x+

∫
f(x) dx

)
,

where L = L(x, y) is a polynomial of degree n. Let ū = ū(x) be the restriction of u to
y = β0 + β1x −

∫
f(x) dx. By hypothesis u and y − β0 − β1x +

∫
f(x) dx are coprime and

thus ū ̸= 0. Furthermore, since y− β0 − β1x+
∫
f(x) dx = 0 is an invariant algebraic curve,

we get that ū satisfies

dū

dx

(
β0 + β1x−

∫
f(x) dx

)
+ β1ū = 0.

Solving this linear differential equation we get

ū = K̄ exp

(
−
∫

β1

β0 + β1x−
∫

f(x) dx

)
, K̄ ∈ C \ {0}.
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Since ∫
f(x) dx =

n∑
i=0

ai
i+ 1

xi+1, an ̸= 0, n ≥ 1

has degree n+ 1, we get that ū cannot be a polynomial, which is not possible.

In short, the unique exponential factors are of the form eu with u = u(x, y) a polynomial.
Let E = eu be an exponential factor of system (1) and

L = L(x, y) =

n∑
k=0

k∑
l=0

βk−l,lx
k−lyl, βk−l,l ∈ C

be its cofactor. We have

(7) y
∂u

∂x
− (g(x) + f(x)y)

∂u

∂y
=

n∑
k=0

k∑
l=0

βk−l,lx
k−lyl.

We write u as a polynomial in the variable y as u =
∑r

j=0 uj(x)y
j . Without loss of generality

we can assume that ur(x) ̸= 0. We rewrite (7) as

r∑
j=0

u′
j(x)y

j+1 − g(x)
r∑

j=1

juj(x)y
j−1 − f(x)

r∑
j=0

juj(x)y
j =

n∑
k=0

k∑
l=0

βk−l,lx
k−lyl =

n∑
l=0

n∑
k=l

βk−l,lx
k−lyl =

n∑
k=0

βk,0x
k + y

n∑
k=1

βk−1,1x
k−1 +

n∑
l=2

yl
n∑

k=l

βk−l,lx
k−l.

(8)

Now we assume that r ≥ n and we shall arrive to a contradiction. Computing in (8) the
coefficient of yr+1 we get that u′

r(x) = 0, that is, ur(x) = γr ∈ C \ {0}. Now we will show
by induction on j that if we write

u = γry
r +

r∑
j=1

ur−j(x)y
r−j ,

then

(9) ur−j(x) = γr
ajn

j!(n+ 1)j
xj(n+1)

j−1∏
i=0

(r − i) + l.o.t., for j = 1, . . . , r,

where l.o.t means lower order terms in x.

For j = 1 computing the coefficient of yr in (8), we get that

u′
r−1(x)− f(x)rur(x) = 0, if r > n,

and

u′
r−1(x)− f(x)rur(x) = β0,r, if r = n.

Integrating it we obtain

ur−1(x) = γrrF (x) + constant = γr
an

n+ 1
rxn+1 + l.o.t., if r > n,

and

ur−1(x) = γrrF (x) + β0,rx+ constant = γr
an

n+ 1
rxn+1 + l.o.t., if r = n.

These last two expressions coincide with (9) for j = 1.
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Now we assume that (9) is true for j = 0, . . . , J with J < r and we will prove it for
j = J + 1. Computing the coefficient of yr−J in (8) we get

u′
r−J−1(x) = g(x)(r − J + 1)ur−J+1(x) + f(x)(r − J)ur−J(x) +

n∑
k=r−J

βk−r+J,r−Jx
k−r+J .

Now using the induction hypothesis and since x(J−1)(n+1)+n+1 belongs to the lower terms
in comparison with xJ(n+1)+n, we obtain that

u′
r−J−1(x) = f(x)(r − J)

γra
J
n

J !(n+ 1)J
xJ(n+1)

J−1∏
i=0

(r − i) + l.o.t.

=
γra

J+1
n

J !(n+ 1)J
xJ(n+1)+n

J∏
i=0

(r − i) + l.o.t.

Now integrating the previous equation we obtain

ur−J−1(x) =
γra

J+1
n

J !(n+ 1)J (J + 1)(n+ 1)
x(J+1)(n+1)

J∏
i=0

(r − i) + l.o.t.

=
γra

J+1
n

(J + 1)!(n+ 1)J+1
x(J+1)(n+1)

J∏
i=0

(r − i) + l.o.t.,

which is equation (9) with j = J + 1. This completes the proof of (9).

From (9) with j = r − 1 we obtain

u1(x) =
γra

r−1
n

(r − 1)!(n+ 1)r−1
x(r−1)(n+1)

r−2∏
i=0

(r − i) + l.o.t.

Then computing the coefficient of y0 in (8) we get

−g(x)u1(x) =
n∑

k=0

βk,0x
k,

or equivalently

(10) −g(x)u1(x) = − bn+1γra
r−1
n

(r − 1)!(n+ 1)r−1
x(r−1)(n+1)+n+1

r−2∏
i=0

(r − i) + l.o.t. =
n∑

k=0

βk,0x
k.

Since r ≥ n ≥ 1 we have that (r−1)(n+1)+n+1 > n, from (10) we have a contradiction.
Hence r ≤ n− 1.

We first assume that r ≥ 2 and again we will reach a contradiction. We claim that (8)
becomes

r∑
j=0

u′
j(x)y

j+1 − g(x)

r∑
j=1

juj(x)y
j−1 − f(x)

r∑
j=0

juj(x)y
j =

n∑
k=0

βk,0x
k + y

n∑
k=1

βk−1,1x
k−1 +

r+1∑
l=2

yl
n∑

k=l

βk−l,lx
k−l.

(11)

Indeed, since all the coefficients with yl for l = r + 2, . . . , n in (8) only appears in the
right-hand we have that

n∑
l=r+2

yl
n∑

k=l

βk−l,lx
k−l = 0.

This implies that (11) holds, and consequently the claim is proved.
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Computing the coefficient of yr+1 in (11) we get that

u′
r(x) =

n∑
k=r+1

βk−r−1,r+1x
k−r−1 i.e, ur(x) = cr +

n∑
k=r+1

βk−r−1,r+1

k − r
xk−r =

n∑
k=r

β̃kx
k−r,

where β̃r = cr ∈ C and β̃k = βk−r−1,r+1/(k − r) for k = r + 1, . . . , n. Without loss of
generality and since ur(x) ̸= 0 we denote by k∗ the greatest integer of {r, . . . , n} such that

β̃k∗ ̸= 0. Then it is clear that

ur(x) = β̃k∗xk∗−r + l.o.t.

We claim that

(12) ur−j(x) =
β̃k∗ajn∏j

i=1(i(n+ 1) + k∗ − r)
xj(n+1)+k∗−r

j−1∏
i=0

(r − i) + l.o.t.,

for j = 1, . . . , r − 1.

Computing the coefficient of yr in (11) we get

u′
r−1(x)− f(x)rur(x) =

n∑
k=r

βk−r,rx
k−r.

Since k∗ ≥ r ≥ 2, the terms xn−r belongs to the lower terms in comparison with xn−r+k∗
.

Then we obtain that

u′
r−1(x) = anrβ̃k∗xn+k∗−r + l.o.t.

Integrating this last expression we get

ur−1(x) =
β̃k∗an

n+ 1 + k∗ − r
xn+1+k∗−rr + l.o.t.,

which coincides with (12) with j = 1.

Now we assume that (12) is true for j = 1, . . . , J with 1 ≤ J < r− 1 and we will prove it
for j = J + 1. Computing the coefficient of yr−J in (11) we get

u′
r−J−1(x)− g(x)(r − J + 1)ur−J+1(x)− f(x)(r − J)ur−J (x) =

n∑
k=r−J

βk−r+J,r−Jx
k−r+J .

Now using the induction hypothesis and since x(J−1)(n+1)+n+1+k∗−r and xn−r+J belong
to the lower terms in comparison with xJ(n+1)+k∗−r+n (note that J ≥ 1), from the last
equation we obtain that

u′
r−J−1(x) = anx

n(r − J)
β̃k∗aJn∏J

i=1(i(n+ 1) + k∗ − r)
xJ(n+1)+k∗−r

J−1∏
i=0

(r − i) + l.o.t.

=
β̃k∗aJ+1

n∏J
i=1((i(n+ 1) + k∗ − r)

xJ(n+1)+k∗−r+n
J∏

i=0

(r − i) + l.o.t.

Now integrating the previous equation we obtain

ur−J−1(x) =
β̃k∗aJ+1

n x(J+1)(n+1)+k∗−r

((J + 1)(n+ 1) + k∗ − r)
∏J

i=1(i(n+ 1) + k∗ − r)

J∏
i=0

(r − i) + l.o.t.

=
β̃k∗aJ+1

n∏J+1
i=1 (i(n+ 1) + k∗ − r)

x(J+1)(n+1)+k∗−r
J∏

i=0

(r − i) + l.o.t.,

which is equation (12) with j = J + 1. This proves the claim done in (12).
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From (12) with j = r − 1 we obtain

u1(x) =
β̃k∗ar−1

n∏r−1
i=1 (i(n+ 1) + k∗ − r)

x(r−1)(n+1)+k∗−r
r−2∏
i=0

(r − i) + l.o.t.,

Then we have that the coefficient of y0 in (11) satisfies

−g(x)u1(x) =
n∑

k=0

βk,0x
k,

or equivalently

−g(x)u1(x) = − bn+1β̃k∗ar−1
n∏r−1

i=1 (i(n+ 1) + k∗ − r)
x(r−1)(n+1)+k∗−r+n+1

r−2∏
i=0

(r−i)+l.o.t. =
n∑

k=0

βk,0x
k.

Since r ≥ 2 we have that (r−1)(n+1)+k∗−r = (r−1)n+k∗−1 ≥ n+k∗−1 ≥ n+r−1 ≥ n+1,
we have a contradiction. Hence r < 2, that is r ≤ 1.

We write u(x, y) = u0(x) + yu1(x). From (8) we have
(13)

yu′
0(x)+ y2u′

1(x)− (g(x)+ f(x)y)u1(x) =
n∑

k=0

βk,0x
k + y

n∑
k=1

βk−1,1x
k−1+ y2

n∑
k=2

βk−2,2x
k−2.

Computing the coefficient of y2 in (13) we get

(14) u′
1(x) =

n∑
k=2

βk−2,2x
k−2, i.e. u1(x) = β∗ +

n∑
k=2

βk−2,2

k − 1
xk−1 with β∗ ∈ C.

Furthermore the coefficient of y in (13) gives

u′
0(x)− f(x)u1(x) =

n∑
k=1

βk−1,1x
k−1.

Integrating we have

u0(x) =

∫
f(x)

(
β∗ +

n∑
k=2

βk−2,2

k − 1
xk−1

)
dx+

n∑
k=1

βk−1,1

k
xk

= β∗F (x) +

n∑
k=2

βk−2,2

k − 1

∫
f(x)xk−1 dx+

n∑
k=1

βk−1,1

k
xk.

(15)

Finally the coefficient of y0 in (13) gives

(16) −g(x)

(
β∗ +

n∑
k=2

βk−2,2

k − 1
xk−1

)
=

n∑
k=0

βk,0x
k.

Since g(x) =
∑n+1

j=0 bjx
j and bn+1 ̸= 0 with n ≥ 1 we have that

(17) β∗ = 0 and βk−2,2 = 0 for k ≥ 2.

Thus from (16) we get that βk,0 = 0 for k = 0, . . . , n. From (14), (15) and (17) we get

u1 = 0, u0 =
n∑

k=1

βk−1,1

k
xk,

and thus

u(x, y) =

n∑
k=1

βk−1,1

k
xk.
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and

(18) L = y

n∑
k=1

βk−1,1x
k−1.

This completes the proof of the proposition. �

Proof of Theorem 1. The exponential factors are eu(x,y) = ex
k

with cofactor kxk−1y, see
Proposition 8. We consider two cases.

Case 1: Assume that the polynomial g does not satisfy the assumptions of Proposition 3.
Then in order that system (1) has a Liouvillian first integral, by Theorem 7 and Propositions
3 and 8, we have

(19)
n∑

l=1

µlx
ly = f(x),

which is not possible since the right-hand side of (19) is independent of y. This ends the
proof of Theorem 1 in this case.

Case 2: Assume that the polynomial g satisfies the assumptions of Proposition 3. Therefore
in order that system (1) has a Liouvillian first integral, by Theorem 7 and Propositions 3
and 8, we have

−λ(f(x) + P ′(x)) + y

n∑
l=1

µlx
l = f(x),

which implies µl = 0 for l = 1, . . . , n and

(20) (1 + λ)f(x) + λP ′(x) = 0.

Assume that statement (a) of Proposition 3 holds. Then P (x) has degree one. Using that
f has degree n ≥ 1, we get from (20) that an(1 + λ) = 0, i.e. λ = −1, and then P ′(x) = 0
which is not possible.

Assume that statement (b) of Proposition 3 holds. Therefore P (x)+

∫
f(x) dx has degree

one. Consequently P ′(x) = −f(x) + b where b is a non-zero constant. In this case, (20)
becomes

f(x) + λb = 0,

which is again not possible. This ends the proof of Theorem 1. �
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