Acta Mathematica Sinica, English Series Mar., 2014, Vol. 30, No. 3, pp. 453–466 Published online: February 15, 2014 DOI: 10.1007/s10114-014-2484-1 Http://www.ActaMath.com

C Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2014

Liouvillian and Analytic Integrability of the Quadratic Vector Fields Having an Invariant Ellipse

Jaume LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain E-mail: jllibre@mat.uab.cat

Claudia VALLS

Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal E-mail: cvalls@math.ist.utl.pt

Abstract We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in \mathbb{R}^2 having an invariant ellipse. More precisely, a quadratic system having an invariant ellipse can be written into the form $\dot{x} = x^2 + y^2 - 1 + y(ax + by + c)$, $\dot{y} = -x(ax + by + c)$, and the ellipse becomes $x^2 + y^2 = 1$. We prove that

(i) this quadratic system is analytic integrable if and only if a = 0;

(ii) if $x^2 + y^2 = 1$ is a periodic orbit, then this quadratic system is Liouvillian integrable if and only if $x^2 + y^2 = 1$ is not a limit cycle; and

(iii) if $x^2 + y^2 = 1$ is not a periodic orbit, then this quadratic system is Liouvilian integrable if and only if a = 0.

Keywords Liouvillian integrability, quadratic planar polynomial vector fields, invariant ellipseMR(2010) Subject Classification 34C05, 34A34, 34C14

1 Introduction and Statement of Main Results

We study polynomial differential systems in \mathbb{R}^2 defined by

$$\dot{x} = P(x, y), \quad \dot{y} = Q(x, y),$$
(1.1)

where P and Q are polynomials with real coefficients such that the maximum degree of P and Q is at most m. When m = 2, we call these differential systems simply *quadratic systems*. The dot denotes derivative with respect to the independent variable t, which is called here the *time*. Associated with system (1.1), we have the quadratic polynomial vector field \mathcal{X} with

$$\mathcal{X} = P(x, y)\frac{\partial}{\partial x} + Q(x, y)\frac{\partial}{\partial y}$$

Received August 14, 2012, accepted April 16, 2013

The first author is partially supported by the MINECO/FEDER (Grant No. MTM2008–03437), AGAUR (Grant No. 2009SGR-410), ICREA Academia and FP7-PEOPLE-2012-IRSES 316338 and 318999; the second author is supported by Portuguese National Funds through FCT - Fundação para a Ciência e a Tecnologia within the project PTDC/MAT/117106/2010 and by CAMGSD