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LIOUVILLIAN FIRST INTEGRALS

FOR A CLASS OF GENERALIZED LIÉNARD POLYNOMIAL

DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We study the existence of Liouvillian first integrals for the generalized
Liénardpolynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y,
where f(x) = 3Q(x)Q′(x)P (x)+Q(x)2P ′(x) and g(x) = Q(x)Q′(x)(Q(x)2P (x)2−
1) with P,Q ∈ C[x]. This class of generalized Liénard polynomial differential sys-
tems has the invariant algebraic curve (y+Q(x)P (x))2−Q(x)2 = 0 of hyperelliptic
type.

1. Introduction and statement of the main result

One of the more classical and difficult problem in the qualitative theory of planar
differential systems depending on parameters is to characterize the existence and
non-existence of first integrals in function of the parameters of the system.

We consider the polynomial differential system

(1) x′ = y, y′ = −g(x)− f(x)y,

called the generalized Liénard polynomial differential system, where x and y are
complex variables and the prime denotes derivative with respect to the time t, which
can be real or complex. Such differential systems appear in several branches of the
sciences, such as biology, chemistry, mechanics, electronics, etc, see for instance
[6, 17] and the references quoted there. For g(x) = x the Liénard differential system
(1) is called the classical Liénard polynomial differential system.

Let

X = y
∂

∂x
− (g(x) + f(x)y)

∂

∂y

be the polynomial vector field associated to system (1). Let U be an open and dense
set in C2. We say that the non–locally constant function H : U → C is a first integral
of the polynomial vector field X on U , if H(x(t), y(t)) = constant for all values of t
for which the solution (x(t), y(t)) of X is defined on U . Clearly H is a first integral
of X on U if and only if XH = 0 on U .

A Liouvillian first integral is a first integral H which is a Liouvillian function,
that is, roughly speaking which can be obtained “by quadratures” of elementary
functions. For a precise definition see [16]. The study of the Liouvillian first integrals
is a classical problem of the integrability theory of the differential equations which
goes back to Liouville.
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As far as we know the Liouvillian first integrals of some multi-parameter family
of planar polynomial differential systems has only been completely classified for the
planar Lotka-Volterra systems, see [1, 7, 12, 13, 14, 15].

Note that when g(x) = x, system (1) is the well-known classical Lienard polyno-
mial differential system whose Liouvillian first integrals were studied in [9]. More-
over, when 2 ≤ deg g ≤ deg f the Liouvillian first integrals of these systems were
studied in [10], and when deg g = deg f + 1 the Liouvillian first integrals of these
systems were studied in [11].

The case of f and g being general polynomials is out of the reach right now. The
study of Liouvillian first integrals is based on particular on the search of what is
called an invariant algebraic curve. Let h = h(x, y) ∈ C[x, y] \ C. As usual C[x, y]
denotes the ring of all complex polynomials in the variables x and y. We say that
h = 0 is an invariant algebraic curve of the vector field X if it satisfies

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= Kh,

for some polynomial K = K(x, y) ∈ C[x, y] called the cofactor of h = 0. Clearly
h has degree at most m = max{deg f + 1, deg g} − 1. We also say that h is a
Darboux polynomial of system (1). Note that a polynomial first integral is a Darboux
polynomial with zero cofactor.

The invariant algebraic curves are important because a sufficient number of them
forces the existence of a first integral. This result is the basis of the Darboux theory
of integrability, see for instance [4, 5, 8].

An exponential factor E of system (3) is a function of the form E = exp(u/v) ̸∈ C
with u, v ∈ C[x, y] satisfying that

(2) y
∂E

∂x
− (g(x) + f(x)y)

∂E

∂y
= LE,

for some polynomial L = L(x, y) of degree at most m, called the cofactor of E.

It is easy to check the following result for any generalized Liénard polynomial
differential system (1).

Proposition 1. System (1) has the exponential factors exp(xj) with cofactors xj−1y
for j = 1, . . . ,max{deg f, deg g− 1} and the ones of the form exp(u(x)) with u(x) a
polynomial of degree at most max{deg f, deg g− 1}. Moreover, if deg g ≤ deg f then
system (1) has the exponential factors exp(x+

∫
f(x) dx) with cofactor −g(x).

The main difficulty for studying the Liouvillian integrability of a polynomial dif-
ferential system is the characterization of the invariant algebraic curves and also
the characterization of the exponential factors of the polynomial differential system.
For that reason we restrict our study of the Liovillian integrability of the generalized
Liénard polynomial differential systems (1) to the following ones

x′ = y,

y′ = −g(x)− f(x)y

= −Q(x)Q′(x)(Q(x)2P (x)2 − 1)−
(
3Q(x)Q′(x)P (x) +Q(x)2P ′(x)

)
y.

(3)

Our main result on the Liouvillian integrability of the class of generalized Liénard
polynomial differential system (3) is the following.
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Theorem 2. The following statements hold for the generalized Liénard polynomial
differential system (3).

(a) When degQ = 0, i.e., Q(x) = κ ∈ C, then system (3) is Liouvillian inte-
grable with the first integral H = y + κ2P (x);

(b) When degP = 0, i.e., P (x) = κ ∈ C, then system (3) is Liouvillian inte-
grable with the first integral

H =
κ2Q(x)2 + κy − 1√

y2 + (2κy − 1)Q(x)2 + κ2Q(x)4
.

(c) Assume that degQ ≥ 1 and degP ≥ 1.
(c.1) The unique irreducible Darboux polynomials are h1 = y+Q(x)

(
P (x)−1

)
and h2 = y+Q(x)(P (x)+1) with cofactors K1 = −Q′(x)(Q(x)P (x)+1)
and K2 = −Q′(x)(Q(x)P (x)− 1), respectively;

(c.2) System (3) is not Liouvillian integrable.

The statements (a) and (b) can be checked directly from the definition of first
integral. We will divide the proof of statement (c) of Theorem 2 into different
sections. In section 3 we will prove Theorem 2(c.1), while the proof of Theorem
2(c.2) will be given in section 4.

Note that the main result in statement (c.1) is the uniqueness of h1 and h2 as
irreducible Darboux polynomials because their existence follows from [18]. We re-
mark that exp(xj) are exponential factors for any generalized Liénard polynomial
differential system (1).

2. Auxiliary notions and results

The following result is well-known. For a proof see, for instance, Proposition 8.4
in [5].

Lemma 3. Assume f ∈ C[x, y] and let f = fn1
1 · · · fnr

r be its factorization into
irreducible factors over C[x, y]. Then for a polynomial differential system (1), f = 0
is an invariant algebraic curve with cofactor Kf if and only if fi = 0 is an invariant
algebraic curve for each i = 1, . . . , r with cofactor Kfi. Moreover Kf = n1Kf1 +
· · ·+ nrKfr .

Proposition 4. The following statements hold.

(a) If E = exp(u/v) is an exponential factor for the polynomial differential sys-
tem (3) and v is not a constant polynomial, then v = 0 is an invariant
algebraic curve.

(b) Eventually E = exp(u) can be exponential factors coming from the multiplic-
ity of the invariant straight line at infinity.

For a geometric meaning of exponential factors and a proof of Proposition 4 see [3].
The existence of exponential factors exp(u/v) is due to the fact that the multiplicity
of the invariant algebraic curve v = 0 is larger than 1, for more details see again [3].

The following result given in [3] characterizes the algebraic multiplicity of an
invariant algebraic curve using the number of exponential factors of system (3)
associated with the invariant algebraic curve.

Proposition 5. Given an irreducible invariant algebraic curve v = 0 of degree k of
system (3), it has algebraic multiplicity ℓ if and only if the vector field associated
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to system (3) has ℓ − 1 exponential factors exp(ui/v
i), where ui is a polynomial of

degree at most ik and (ui, v) = 1 for i = 1, . . . , ℓ− 1.

In view of Proposition 5 if we prove that eu/v is not an exponential factor with
degu ≤ deg v, there are no exponential factors associated to the invariant algebraic
curve v = 0.

We say that a C1 function V = V (x, y) is an integrating factor if it satisfies

XV = −divXV,

where div stands for the divergence of the vector field X.

In 1992 Singer [16] proved that a polynomial differential system has a Liouvillian
first integral, if and only if it has an integrating factor of the form

exp

(∫
U1(x, y)dx+

∫
U2(x, y)dy

)
,

where U1 and U2 are rational functions which verify ∂U1/∂y = ∂U2/∂x. In 1999
Christopher [2] improved the results of Singer showing that there are integrating
factors of the form

(4) exp(u/v)

k∏
i=1

fλi
i ,

where u, v and fi are polynomials and λi ∈ C. From the Darboux theory of inte-
grability (see [5, 8, 16]) we have the following result.

Theorem 6. The polynomial differential system (3) has a Liouvillian first integral
if and only if system (3) has an integrating factor of the form (4), or equivalently
there exist p invariant algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p, q
exponential factors Ej = exp(uj/vj) with cofactors Lj for j = 1, . . . , q and λj , µj ∈ C
not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = −divergence of (3) = f(x).

3. Proof of Theorem 2(c.1)

The proof of Theorem 2(c.1) will be a direct consequence of some auxiliary results.

Proposition 7. Let h = h(x, y) be a Darboux polynomial of system (3) with cofactor
K ̸= 0. Then K = K(x).

Proof. From the fact that system (3) has degree equal to deg g = 2deg f + 1 =
m+ 1 ≥ 3, and that K is a polynomial of degree at most m we write K as

(5) K(x, y) =
m∑
j=0

Kj(x)y
j ,

where Kj(x) has degree at most m− j. By assumptions h satisfies

(6) y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= h

m∑
j=0

Kj(x)y
j ,
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where f and g were given in (3). We write h(x, y) =
∑l

j=0 hj(x)y
j . Without loss of

generality we can assume that hl(x) ̸= 0. Computing the coefficient of yl+m in (6)
we get

0 = hl(x)Km(x) that is Km(x) = 0.

Therefore repeating this argument for yl+m−1, . . . , yl+2, we get that Kj(x) = 0 for

j = 2, . . . ,m− 1. Hence K(x) = K0(x)+K1(x)y. Computing the coefficient of yl+1

in (6) we get h′l(x) = hl(x)K1(x) that is

hl(x) = C exp
(∫

K1(x) dx
)
, C ∈ C.

Since hl(x) must be a polynomial in x we have that K1(x) = 0. This completes the
proof of the proposition. �

Proposition 8. The unique irreducible Darboux polynomials of system (3) with
non–zero cofactor are h1 = y + Q(x)(P (x) − 1) and h2 = y + Q(x)(P (x) + 1) with
cofactors, respectively, K1 = −Q′(x)(Q(x)P (x) + 1) and K2 = −Q′(x)(Q(x)P (x)−
1).

Proof. By direct computations we get that h1 and h2 are irreducible Darboux poly-
nomials of system (3).

Now we shall prove that these are the only irreducible Darboux polynomials of
system (3). Let h = h(x, y) be another irreducible Darboux polynomial of system
(3) with cofactor K. In view of Proposition 7 we have that K = K(x). Then,

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= K(x)h,

with f and g as in (3).

Now we introduce the variables (X,Y ) with

(7) X = x and Y = h1 = y +Q(x)(P (x)− 1).

Then in these variables system (3) becomes

(8) X ′ = Y −Q(X)(P (X)− 1), Y ′ = −Q′(X)(Q(X)P (X) + 1)Y.

Let h = h̄(X,Y ). Then, if we denote by h̃ = h̃(X) the restriction of h̄ to Y = 0 we

get that h̃ ̸= 0 (otherwise h would not be irreducible). Note that h̃ is a Darboux
polynomial of system (8) restricted to Y = 0, that is,

(9) −Q(X)(P (X)− 1)
dh̃

dX
= K(X)h̃

where K(X) is the cofactor of h̃, equal to the cofactor of h.

Solving this linear differential equation we deduce that

(10) h̃ = C exp
(
−

∫
K(X)

Q(X)(P (X)− 1)
dX

)
, C ∈ C \ {0}.

Let r(X) = −Q(X)(P (X) − 1). Without loss of generality we can assume that K
and r are coprime, otherwise we divide by their common factor. We claim that

(11) degK < deg r.
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We proceed by contradiction. Assume that and consider the Euclidean division of
K and r. We have

(12) K(X) = s(X)r(X) + ψ(X),

where ψ(X) cannot be zero taking into account that K and r are coprime and
degψ < deg r. Hence equation (12) becomes

(13)
K(X)

r(X)
= s(X) +

ψ(X)

r(X)
.

Integrating this equation and taking into account (10) we have that

(14) h̃(X) = C exp(s̃(X)) exp
(∫

ψ(X)

r(X)
dX

)
, C ∈ \{0}

where s̃′(X) = s(X). Therefore, the first factor in (14) cannot cancel with the

second factor of (14), and this gives a contradiction with the fact that h̃(X) is a
polynomial. Hence, we conclude that degK < deg r, which proves (11).

We say that the polynomial r(X) is square-free if r(X) =
∏k

l=1(X − αl) with
αl ̸= αl for l, j = 1, . . . , k and l ̸= j. We claim that

(15) the polynomial r must be square free.

We again proceed by contradiction. Using an affine transformation of the form
X 7→ X + α with α ∈ C if necessary, we can assume that X is a factor of the
polynomial r with multiplicity µ > 1. Then we write it as r(X) = Xµs(X) with
s(0) ̸= 0. We know that K(0) ̸= 0 since K and r are coprime. Now we develop
K(X)/r(X) in simple fractions of X, that is

K(X)

r(X)
=

cµ
Xµ

+
cµ−1

Xµ−1
+ · · ·+ c1

X
+
α1(X)

s(X)
,

where α1(X) is a polynomial with degα1 < deg s and ci ∈ C, for i = 1, 2, . . . , µ.
Equating both expressions we get that cµ = K(0)/s(0) ̸= 0. Therefore equation (10)
becomes

h̃(X) = C exp
( cµ
1− µ

· 1

Xµ−1

)
exp

[ ∫ ( cµ−1

Xµ−1
+ · · ·+ c1

µ
+
α1(X)

s(X)

)
dX

]
,

where C ∈ C \ {0}. The first exponential cannot be simplified with any part of the

second exponential. Thus, we get a contradiction with the fact that h̃ must be a
polynomial. Therefore we conclude that r must be square-free and (15) is proved.

Hence we have

(16)
K(X)

r(X)
=

γ1
X − α1

+ · · ·+ γk
X − αk

.

Integrating (10) we get

h̃(X) = C(X − α1)
γ1(X − α2)

γ2 · · · (X − αk)
γk , C ∈ C \ {0}.

Since h̃ must be a polynomial we must have that γi ∈ N ∪ {0} for i = 1, . . . , k.

Now we introduce the variables (X,Y ) with

(17) X = x and Y = h2 = y +Q(x)(P (x) + 1).

Then in these variables system (3) becomes

(18) X ′ = Y −Q(X)(P (X) + 1), Y ′ = −Q′(X)(Q(X)P (X)− 1)Y.
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Let h = ĥ(X,Y ). Then, if we denote by h∗ = h∗(X) the restriction of ĥ to Y = 0
we get that h∗ ̸= 0 (otherwise h would not be irreducible). Here h∗ is a Darboux
polynomial of system (18) restricted to Y = 0, that is

−Q(X)(P (X) + 1)
dh∗

dX
= K(X)h∗.

Solving this linear differential equation we deduce that

(19) h∗ = C1 exp
(
−

∫
K(X)

Q(X)(P (X) + 1)
dX

)
, C1 ∈ C \ {0}.

Proceeding as we did for h̃, if we denote by r∗(X) = −Q(X)(P (X) + 1), then we
must have that r∗ is square free and that

(20)
K(X)

r∗(X)
=

δ1
X − β1

+ · · ·+ δℓ
X − βℓ

.

Integrating (19) we get

h∗(X) = C1(X − β1)
δ1(X − β2)

δ2 · · · (X − βℓ)
δℓ , C1 ∈ C \ {0}.

Since h∗ must be a polynomial we must have that βi ∈ N ∪ {0} for i = 1, . . . , ℓ.

Note that if we denote by h = h(x, y) a Darboux polynomial of system (3) with
cofactor K = K(x) then

h = h̃+ (y +Q(x)(P (x)− 1))h1, h = h∗ + (y +Q(x)(P (x) + 1))h2,

for some polynomials h1, h2 ∈ C[x, y]. Moreover, from (16) we obtain

K(x) = − h̃
′(x)

h̃(x)
Q(x)(P (x)− 1),

where the prime denotes derivative with respect to x, and from (20) we get

K(x) = −h
∗′(x)

h∗(x)
Q(x)(P (x) + 1).

Hence
h̃′(x)

h̃(x)
(P (x)− 1) =

h∗
′
(x)

h∗(x)
(P (x) + 1),

which yields (
h̃′(x)

h̃(x)
− h∗

′
(x)

h∗(x)

)
P (x) =

h̃′(x)

h̃(x)
+
h∗

′
(x)

h∗(x)
.

That is
(21)

P (x) =
h̃′(x)h∗(x) + h̃(x)h∗

′
(x)

h̃′(x)h∗(x)− h̃(x)h∗′(x)
= 1 + 2

h̃(x)h∗
′
(x)

h̃′(x)h∗(x)− h̃(x)h∗′(x)
= 1− 2

1− u(x)
,

where

u(x) =
h∗(x)

h∗′(x)

h̃′(x)

h̃(x)
.

The rational function u(x) cannot be a constant, because the polynomial P (x) has
degree at least one. Clearly from (21) the function u(x) cannot be neither a poly-
nomial, nor a quotient of two polynomials. This is, we have a contradiction. This
concludes the proof of the proposition. �
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Proposition 9. System (3) has no polynomial first integrals.

Proof. We introduce the variables (X,Y ) as in (7) and we get system (8). Let

h = h̄(X,Y ) be a polynomial first integral. Then, if we denote by h̃ = h̃(X) the

restriction of h̄ to Y = 0, then h̃ satisfies (9) with K(X) = 0, i.e.

−Q(X)(P (X)− 1)
dh̃

dX
= 0. Then h̃(X) = c̃ ∈ C.

Since we can assume without loss of generality that h has no constant terms, we
have c̃ = 0 and thus h̃ = 0.

Now, introducing the variables (X,Y ) as in (17) we get system (18). Then if we

denote by h∗ = h∗(X) the restriction of ĥ to Y = 0, then h∗ satisfies (20) with
K(X) = 0, i.e.

−Q(X)(P (X) + 1)
dh∗

dX
= 0. Then h∗(X) = c∗ ∈ C.

Since we can assume without loss of generality that h has no constant terms, we
have c∗ = 0 and thus h∗ = 0.

In short any polynomial first integral h can be written as

h = (y +Q(x)(P (x)− 1))g1, h = (y +Q(x)(P (x) + 1))g2,

for some polynomials g1, g2 ∈ C[x, y]. Hence,

h = [(y +Q(x)P (x))2 −Q(x)2]g3,

for some g3 ∈ C[x, y] that satisfies

y
∂g3
∂x

−
(
Q(x)Q′(x)(Q(x)2P (x)2−1)+

(
3Q(x)Q′(x)P (x)+Q(x)2P ′(x)

)
y
)∂g3
∂y

= Kg3,

with K = 2Q′(x)Q(x)P (x). In other words g3 must be a Darboux polynomial of
system (3) with cofactorK = 2Q′(x)Q(x)P (x). In view of Proposition 8 and Lemma
3 we must have

m1K1(x) +m2K2(x) = 2Q′(x)Q(x)P (x), m1,m2 ∈ N ∪ {0},

were K1(x) = −Q′(x)(Q(x)P (x) + 1) and K2(x) = −Q′(x)(Q(x)P (x) − 1). This is
not possible because m1 and m2 must be positive integers, and this contradiction
completes the proof of the proposition. �

Proof of Theorem 2(c.1). The proof of Theorem 2(c.1) follows directly from Propo-
sitions 8 and 9. �

4. Proof of Theorem 2(c.2)

We divide the proof of Theorem 2 in different steps.

Lemma 10. System (3) has no exponential factors of the form exp(u/h) with u and
h coprime and deg u < deg h, being h one of the two irreducible Darboux polynomials
of Proposition 8.
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Proof. Let h1 = y+Q(x)(P (x)−1) and E = exp(u/h1) with u and h1 being coprime.
Clearly, after simplifying by exp(u/h1), we get that u satisfies

y
∂u

∂x
−

(
Q(x)Q′(x)(Q(x)2P (x)2 − 1) +

(
3Q(x)Q′(x)P (x) +Q(x)2P ′(x)

)
y
)∂u
∂y

+Q′(x)(Q(x)P (x) + 1)u = L(x, y)h1,

(22)

where L is a polynomial of degree at most m. We introduce the change of variables
of (7) and equation (22) becomes

(Y −Q(X)(P (X)− 1))
∂ū

∂X
−Q′(X)(Q(X)P (X) + 1)Y

∂ū

∂Y
+Q′(X)(Q(X)P (X) + 1)ū = L̄Y,

(23)

where ū = ū(X,Y ) = u(x, y) and L̄ = L̄(X,Y ) = L(x, y). If we denote by ũ the
restriction of ū to Y = 0 we have that ũ ̸= 0 (otherwise ū would be divisible by Y ).
Evaluating (23) on Y = 0 we conclude that

−Q(X)(P (X)− 1)
dũ

dX
+Q′(X)(Q(X)P (X) + 1)ũ = 0.

Therefore ũmust be a polynomial that satisfies (9) withK(X) = −Q′(X)(Q(X)P (X)+
1). Note that proceeding as in the proof of Proposition 8 we get that degK(X) must
be less than the degree of Q(X)(P (X) − 1), which is not the case. Hence, system
(3) has no exponential factors of the form exp(u/h1) with u and h1 being coprime.

Let h2 = y + Q(x)(P (x) + 1) and E = exp(u/h2) with u and h2 being coprime.
After simplifying by u/h2, we get that u satisfies

y
∂u

∂x
−

(
Q(x)Q′(x)(Q(x)2P (x)2 − 1) +

(
3Q(x)Q′(x)P (x) +Q(x)2P ′(x)

)
y
)∂u
∂y

+Q′(x)(Q(x)P (x)− 1)u = L(x, y)h2,

(24)

where L is a polynomial of degree at most m. We introduce the change of variables
of (17) and equation (24) becomes

(Y −Q(X)(P (X) + 1))
∂ū

∂X
−Q′(X)(Q(X)P (X)− 1)Y

∂ū

∂Y
+Q′(X)(Q(X)P (X)− 1)ū = L̄Y,

(25)

where ū = ū(X,Y ) = u(x, y) and L̄ = L̄(X,Y ) = L(x, y). If we denote by ũ the
restriction of ū to Y = 0 we have that ũ ̸= 0 (otherwise ū would be divisible by Y ).
Evaluating (25) on Y = 0 we conclude that

−Q(X)(P (X) + 1)
dũ

dX
+Q′(X)(Q(X)P (X)− 1)ũ = 0.

Note that proceeding as in the proof of Proposition 8 we get that the degree of
(Q′(X)(Q(X)P (X) − 1)) must be less than the degree of Q(X)(P (X) + 1), which
is not the case. Hence, system (3) has no exponential factors of the form exp(u/h2)
with u and h2 being coprime. �

In view of Proposition 5 and Lemma 10, system (3) has no exponential factors of
the form E = exp(u/hnj ) with u ∈ C[x, y] coprime with hj for j = 1, 2 and n ≥ 1.
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Then the unique possible exponential factors of system (3) are of the form eu with
u ∈ C[x, y].

Lemma 11. If system (3) has a Liouvillian first integral, then it has an integrating

factor of the form exp(u(x, y))hλ1
1 h

λ2
2 where u ∈ C[x, y], λ1, λ2 ∈ C and h1 and

h2 are the Darboux polynomials of Theorem 2 (c.1). Moreover the cofactor of the
exponential factor exp(u(x, y)) is a polynomial L = L(x).

Proof. Let L(x, y) be the cofactor of exp(u(x, y)). In order that system (3) has a
Liouvillian first integral, by Theorems 6, Theorem 2 (c.1) and Lemma 10 we must
have

− λ1Q
′(x)(Q(x)P (x) + 1)− λ2Q

′(x)(Q(x)P (x)− 1) + L(x, y) = f(x) =

= 3Q(x)Q′(x)P (x) +Q(x)2P ′(x).
(26)

We expand L in power series in the variable y as L(x, y) =
∑m

j=0 Lj(x)y
j . Computing

the coefficients of yj with j > 0 in (26) we get that Lj(x) = 0 for j = 1, . . . , n and
thus L = L0(x). This concludes the proof. �

Since we are looking for Liouvillian first integrals of system (3), in view of Lemma
11, we can restrict to study the exponential factors with cofactor L = L(x).

Proposition 12. System (3) has no exponential factors of the form exp(u) where
u ∈ C[x, y] with cofactor L = L(x).

Proof. Let E = exp(u) with u ∈ C[x, y] \ C and let L = L(x) =
∑m

k=0 βkx
k be the

cofactor associated to E with βk ∈ C. We write u =
∑r

j=0 uj(x)y
j . Without loss

of generality we can assume that ur(x) ̸= 0. By the definition of exponential factor
(2) we have

(27) y
∂u

∂x
− (g(x) + f(x)y)

∂u

∂y
=

m∑
k=0

βkx
k,

with f and g as in (3). Then

r∑
j=1

u′j(x)y
j+1 −Q(x)Q′(x)(Q(x)2P (x)2 − 1)

r∑
j=1

juj(x)y
j−1

−Q(x)(3Q′(x)P (x) +Q(x)P ′(x))

r∑
j=1

juj(x)y
j =

m∑
k=0

βkx
k.

(28)

We write

Q(x) = aqx
q + l.o.t. and P (x) = bpx

p + l.o.t,

where l.o.t denotes the lower order terms in x.

Now we consider two cases.

Case 1: r ≥ 2. Computing in (28) the coefficient of yr+1 we get that u′r(x) = 0,
that is, without loss of generality we can take ur(x) = 1. Now we claim that if we
write

u = u(x, y) = yr +

r∑
j=1

ur−j(x)y
r−j ,
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then for j = 1, . . . , r

(29) ur−j(x) =
(a2qbp)

jAj

j!(2q + p)j
xj(2q+p) + l.o.t.,

where A1 = (3q + p)r, A2 = q(2q + p)r + (3q + p)2r(r − 1), and for ℓ ≥ 2,

(30) Aℓ+1 = (3q + p)(r − ℓ)Aℓ + qℓ(2q + p)(r − ℓ− 1)Aℓ−1.

Note that in view of (30) we have that Aℓ+1 > 0 for any ℓ = 0, . . . , r − 1.

We start the proof of the claim. For j = 1 computing the coefficient of yr in (28),
we get that

u′r−1(x) = rQ(x)(3Q′(x)P (x) +Q(x)P ′(x)) = r(3q + p)a2qbpx
2q+p−1 + l.o.t.

Integrating it we obtain

ur−1(x) =
a2qbp(3q + p)r

2q + p
x2q+p + l.o.t.,

which coincides with (29) for j = 1.

For j = 2 computing the coefficient of yr−1 in (28) we get that

u′r−2(x) = Q(x)(Q′(x)(Q(x)2P (x)2 − 1)r

+Q(x)(3Q′(x)P (x) +Q(x)P ′(x))(r − 1)ur−1(x).

Now using that ur−1(x) =
a2qbp(3q+p)r

(2q+p) x(2q+p) + l.o.t. we obtain

u′r−2(x) = qa4qb
2
prx

4q+2p−1 + (3q + p)a2qbp(r − 1)x2q+p−1
a2qbp(3q + p)r

2q + p
x2q+p + l.o.t.

= qa4qb
2
prx

4q+2p−1 + a4qb
2
p

(3q + p)2r(r − 1)

2q + p
x4q+2p−1 + l.o.t.

=
a4qb

2
p

2q + p

(
q(2q + p)r + (3q + p)2r(r − 1)

)
x4q+2p−1 + l.o.t.

=
a4qb

2
pA2

2q + p
x4q+2p−1 + l.o.t.

Integrating it we get

ur−2(x) =
a4qb

2
pA2

2!(2q + p)2
x4q+2p + l.o.t.,

which coincides with (29) for j = 2.

Now we assume that (29) holds for j = 0, . . . , L with L < r and we will prove it
for j = L+ 1. Computing the terms in (28) with yr−L we get

u′r−L−1(x) = Q′(x)Q(x)3P (x)2(r − L+ 1)ur−L+1(x)

+Q(x)(3Q′(x)P (x) +Q(x)P ′(x))(r − L)ur−L(x) + l.o.t.
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Now using the induction hypothesis and (30) we obtain that

u′r−L−1(x) = qa4qb
2
px

4q+2p−1(r − L+ 1)
(a2qbp)

L−1AL−1

(L− 1)!(2q + p)L−1
x(L−1)(2q+p)

+ (3q + p)a2qbpx
2q+p−1(r − L)

(a2qbp)
LAL

L!(2q + p)L
xL(2q+p) + l.o.t.

=
(a2qbp)

L+1

L!(2q + p)L
x(L+1)(2q+p)−1

(
qL(2q + p)(r − L+ 1)AL−1

+ (3q + p)(r − L)AL

)
+ l.o.t.

=
(a2qbp)

L+1AL+1

L!(2q + p)L
x(L+1)(2q+p)−1 + l.o.t.

Integrating the previous equation yields

ur−L−1(x) =
(a2qbp)

L+1AL+1

L!(2q + p)L(L+ 1)(2q + p)
x(L+1)(2q+p) + l.o.t.

=
(a2qbp)

L+1AL+1

(L+ 1)!(2q + p)L+1
x(L+1)(2q+p) + l.o.t.,

which is equation (29) with j = L+ 1. This completes the proof of the claim.

From (29) with j = r − 1 we obtain

(31) u1(x) =
(a2qbp)

r−1Ar−1

(r − 1)!(2q + p)r−1
x(r−1)(2q+p) + l.o.t.

We recall that Ar−1 > 0. Now computing the coefficient of y0 in (28) we get

(32) −Q(x)Q′(x)(Q(x)2P (x)2 − 1)u1(x) =
m∑
k=0

β0,kx
k.

Using (31) the degree of the polynomial in the left hand side of (32) is (r− 1)(2q +
p) + 4q + 2p − 1 ≥ 6q + 3p − 1. Since the degree of the right-hand side is at most
m = 4q + 2p− 2, we have a contradiction.

Case 2: r ≤ 1. We write u = u(x, y) = u0(x)+u1(x)y. Computing the coefficient
of y2 in (28) we get

u′1(x) = 0, and without loss of generality we can take u1(x) = 1.

Furthermore the coefficient of y in (28) gives

(33) u′0(x)− (3Q(x)Q′(x)P (x) +Q(x)2P ′(x)) = 0,

that is

u0(x) = β0 +

∫
(3Q(x)Q′(x)P (x) +Q(x)2P ′(x)) dx,

being β0 a constant.

Finally the coefficient of y0 in (28) gives

(34) −Q(x)Q′(x)(Q(x)2P (x)2 − 1) =

m∑
k=0

βkx
k.

Since g(x) = Q(x)Q′(x)(Q(x)2P (x)2 − 1) has degree m + 1, from (34) we get a
contradiction. This concludes the proof of the proposition. �
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Proof of Theorem 2(c.2). The proof of Theorem 2 follows directly from Lemma 11
and Proposition 12. �
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