Darboux integrability of 2-dimensional Hamiltonian systems with homogenous potentials of degree 3

Jaume Llibre ${ }^{1, a)}$ and Claudia Valls ${ }^{2, b}$)
${ }^{1}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
${ }^{2}$ Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal

(Received 7 June 2013; accepted 5 March 2014; published online 21 March 2014)

We provide a characterization of all Hamiltonian systems of the form $H=\left(p_{1}^{2}\right.$ $\left.+p_{2}^{2}\right) / 2+V\left(q_{1}, q_{2}\right)$, where V is a homogenous polynomial of degree 3 which are completely integrable with Darboux first integrals. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868701]

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We consider \mathbb{R}^{4} as a symplectic linear space with canonical variables $q=\left(q_{1}, q_{2}\right)$ and $p=\left(p_{1}\right.$, p_{2}), with q_{i} called the coordinates and p_{i} called the momenta. We want to study the Hamiltonian systems with Hamilton's function of the form

$$
H=\frac{1}{2} \sum_{i=1}^{2} p_{i}^{2}+V(q)
$$

where $V(q)=V\left(q_{1}, q_{2}\right)$ is a homogeneous polynomial of degree 3 , i.e., we will study the Hamiltonian systems

$$
\begin{equation*}
\dot{q}_{i}=p_{i}, \quad \dot{p}_{i}=-\frac{\partial V}{\partial q_{i}}, \quad i=1,2 . \tag{1}
\end{equation*}
$$

During the last century these systems have been actively investigated, with special attention to these systems where V has degree at most 5 and which have a second polynomial first integral with degree at most 4 in the variables p_{1} and p_{2} (see, for instance, Refs. $1,2,10,11$, and 19). When the homogeneous potential has degree three we want to mention the works of Hietarinta ${ }^{12,13}$ where the author studied the polynomial integrability assuming that the additional first integral is a polynomial of order at most four in the momenta.

We start by recalling some definitions. Let $A=A(p, q)$ and $B=B(p, q)$ be two functions. Their Poisson bracket $\{A, B\}$ is defined as

$$
\{A, B\}=\sum_{i=1}^{2}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right)
$$

We say that two functions A and B are in involution if $\{A, B\}=0$. We say that a non-constant function $F=F(q, p)$ is a first integral for the Hamiltonian system (1) if it commutes with the Hamiltonian function H, i.e., $\{H, F\}=0$. We say that the Hamiltonian system (1) is completely integrable if it has 2 functionally independent first integrals which are in involution. One first integral will always be the Hamiltonian H. We say that two functions H and F are independent if their gradients are linearly independent at all points \mathbb{R}^{4} except perhaps in a zero Lebesgue set.

[^0]
[^0]: ${ }^{\text {a) }}$ Electronic mail: jllibre@mat.uab.cat
 ${ }^{\text {b) }}$ Electronic mail: cvalls@math.ist.utl.pt

