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ANALYTIC INTEGRABILITY OF HAMILTONIAN
SYSTEMS WITH EXCEPTIONAL POTENTIALS

JAUME LLIBRE1 AND CLAUDIA VALLS3

Abstract. We study the existence of analytic first integrals of
the complex Hamiltonian systems of the form

H =
1

2

2∑
i=1

p2i + Vl(q1, q2)

with the homogeneous polynomial potential

Vl(q1, q2) = α(q2 − iq1)
l(q2 + iq1)

k−l, l = 0, . . . , k, α ∈ C \ {0}
of degree k called exceptional potentials. In Remark 2.1 of J. Math.
Phys. 46 (2005), 062901, the authors state: The exceptional po-
tentials V0, V1, Vk−1, Vk and Vk/2 when k is even are integrable
with a second polynomial first integral. However nothing is known
about the integrability of the remaining exceptional potentials.

Here we prove that the exceptional potentials with k even differ-
ent from V0, V1, Vk−1, Vk and Vk/2, have no independent analytic
first integral different from the Hamiltonian one.

Additionally in the cases V2 and Vk−2 with k either even or odd
we show that they do not have rational first integrals independent
of the Hamiltonian.

1. Introduction and statement of the main results

Ordinary differential equations in general and Hamiltonian systems
in particular play a very important role in many branches of the applied
sciences. The question whether a differential system admits a first
integral is of fundamental importance as first integrals give conservation
laws for the model and that enables to lower the dimension of the
system. Moreover knowing a sufficient number of first integrals allows
to solve the system explicitly. Until the end of the 19th century the
majority of scientists thought that the equations of classical mechanics
were integrable and finding the first integrals was mainly a problem
of computation. In fact, now we know that the integrability is a non-
generic phenomenon inside the class of Hamiltonian systems (see [3]),
and in general it is very hard to determine whether a given Hamiltonian
system is integrable or not.
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In this work we are concerned with the integrability of the natural
Hamiltonian systems defined by a Hamiltonian function of the form

(1) H =
1

2

2∑
i=1

p2i + V (q1, q2),

where V (q1, q2) ∈ C[q1, q2] is a homogeneous polynomial potential of
degree k. As usual C[q1, q2] is the ring of polynomial functions over C
in the variables q1 and q2. To be more precise we consider the following
system of four differential equations

(2) q̇i = pi, ṗi = −∂V

∂qi
, i = 1, 2.

Let A = A(q,p) and B = B(q,p) be two functions, where p = (p1, p2)
and q = (q1, q2). We define the Poisson bracket of A and B as

{A,B} =
2∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

The functions A and B are in involution if {A,B} = 0. A non–constant
function F = F (q,p) is a first integral for the Hamiltonian system (2)
if it is in involution with the Hamiltonian function H, i.e. {H,F} = 0.
Since the Poisson bracket is antisymmetric it follows that H itself is
always a first integral. A 2–degree of freedom Hamiltonian system (2)
is completely or Liouville integrable if it has 2 functionally independent
first integrals H and F . As usual H and F are functionally independent
if their gradients are linearly independent at all points of C4 except
perhaps in a zero Lebesgue measure set.

Let PO 2(C) denote the group of 2×2 complex matrices A such that
AAT = α Id, where Id is the 2×2 identity matrix and α ∈ C\{0}. The
potentials V1(q) and V2(q) are equivalent if there exists a matrix A ∈
PO 2(C) such that V1(q) = V2(Aq). Therefore we divide all potentials
into equivalent classes. In what follows a potential means a class of
equivalent potentials in the above sense. This definition of equivalent
potentials is motivated by the following simple observation (for a proof
see [1]). Let V1 and V2 be two equivalent potentials. If the Hamiltonian
system (2) with the potential V1 is integrable, then it is also integrable
with the potential V2.

It was shown in [2] that among all equivalent potentials one can
always choose a representative V such that the polynomial V has one
root in an arbitrary point of CP1 \ {[1 : +i], [1 : −i]}. This is always
possible except for cases when all linear factors of V have the form
q2 ± iq1, that is, if the potential V is of the form

V = Vl = α(q2 − iq1)
l(q2 + iq1)

k−l, l = 0, . . . , k, α ∈ C \ {0}.
These potentials are called exceptional. It was proved in [1] that the
exceptional potentials V0, V1, Vk−1, Vk and Vk/2 when k is even are
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integrable . It is easy to find that for these exceptional potentials the
additional polynomial first integral is:

I0 = p1 − ip2, I1 = k(p1 − ip2)
2 − 4α(q2 + iq1)

k,

Ik−1 = k(p1 + ip2)
2 − 4α(q2 − iq1)

k, Ik = p1 + ip2,

and when k is even
Ik/2 = q2p1 − q1p2.

It is also claimed in [2] and [1] that nothing is known about the integra-
bility of the remaining exceptional potentials. In this paper we focus
on these remaining exceptional potentials. We restrict to the potentials
Vl with l = 2, . . . , k/2 − 1, k/2 + 1, . . . , k − 2 and k even. Note that
if k ≤ 4 all the exceptional potentials are integrable with polynomial
first integrals. So we will focus on the case k ≥ 5.

System (2) becomes

q̇1 = p1,

q̇2 = p2,

ṗ1 = αi[(2l − k)q2 + ik1q1](q2 − iq1)
l−1(q2 + iq1)

k−l−1,

ṗ2 = −αi[(2l − k)q1 − ikq2](q2 − iq1)
l−1(q2 + iq1)

k−l−1.

(3)

Our main results are the following.

Theorem 1. System (3) with k ≥ 6 even and l = 2, . . . , k/2−1, k/2+
1, . . . , k − 2 does not admit an additional analytic first integral inde-
pendent of the Hamiltonian one.

The proof of Theorem 1 is given in section 3. We state the following
conjecture.

Conjecture 1. System (3) with k ≥ 5 odd and l = 2, . . . , k−2 does not
admit an additional analytic first integral independent of the Hamilton-
ian one.

In the case in which l = 2 or l = k − 2 with k being either even or
odd, we can also prove with different techniques the non–existence of
rational first integrals.

Theorem 2. System (3) with l = 2 or l = k−2 and k ≥ 5 does not ad-
mit an additional rational first integral independent of the Hamiltonian
one.

The proof of Theorem 2 is given in section 2.

2. Weight-homogeneous polynomial differential system
and proof of Theorem 2

We consider polynomial differential system of the form

(4)
dx

dt
= ẋ = P(x), x = (x1, x2, x3, x4) ∈ C4
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with P(x) = (P1(x), P2(x), P3(x), P4(x) and Pi ∈ C[x1, x2, x3, x4] for
i = 1, 2, 3, 4. As usual N, R and C denote the sets of positive integers,
real and complex numbers, respectively; and C[x1, x2, x3, x4] denotes
the polynomial ring over C in the variables x1, x2, x3, x4. Here t can be
real or complex.

We say that system (4) is weight–homogeneous if there exist s =
(s1, s2, s3, s4) ∈ N4 and d ∈ N such that for arbitrary a ∈ R+ = {a ∈
R, a > 0} we have

Pi(a
s1x1, a

s2x2, a
s3x3, a

s4x4) = asi−1+dPi(x1, x2, x3, x4),

for i = 1, 2, 3, 4. We call s = (s1, s2, s3, s4) as the weight exponent of
system (4) and d as weight degree with respect to the weight exponent
s.

We say that a polynomial F (x1, x2, x3, x4) is a weight-homogeneous
polynomial with weight exponent s = (s1, s2, s3, s4) and weight degree d
if

F (as1x1, a
s2x2, a

s3x3, a
s4x4) = adF (x1, x2, x3, x4),

for all a > 0.

The following well–known proposition (easy to prove) reduces the
study of the existence of analytic first integrals of a weight–homogeneous
polynomial differential system (4) to the study of the existence of a
weight-homogeneous polynomial first integrals.

Proposition 3. Let H be an analytic function and let H =
∑

i Hi

be its decomposition into weight–homogeneous polynomials of weight
degree i with respect to the weight exponent s. Then H is an analytic
first integral of the weight-homogeneous polynomial differential system
(4) with weight exponent s if and only if each weight-homogeneous part
Hi is a first integral of system (4) for all i.

We introduce the change of variables

x1 = p1 + ip2, x2 = p1 − ip2, y1 = q1 + iq2, y2 = q1 − iq2.

In these new variables system (3) becomes

ẋ1 = 2α(l − k)(−1)likyl1y
k−l−1
2 ,

ẋ2 = −2αl(−1)likyl−1
1 yk−l

2 ,

ẏ1 = x1,

ẏ2 = x2.

(5)

Note that system (5) is Hamiltonian with Hamiltonian

H =
x1x2

2
+ α(−1)likyl1y

k−l
2 , α ∈ C \ {0}.

It is easy to check that system (5) is a weight–homogeneous polynomial
differential system with weight exponent s = (s1, s2, s3, s4) where

(6) s1 = l(k+1)+1, s2 = (l−1)(k+1), s3 = k+ l+1, s4 = l−1
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and weight degree d = 1+ k(l− 1). Note that since l ≥ 2 we have that
s1, s2, s3, s4, d ∈ N.

From Proposition 3 and the observation above it follows that for
proving the existence of non–existence of analytic first integrals of sys-
tem (5) it is sufficient to show the existence or non–existence of weight-
homogeneous polynomial first integrals with weight exponents given in
(6).

We recall that in the case in which k is even, we can be more precise
and it is clear that system (5) is a weight-homogeneous polynomial dif-
ferential system with weight exponent (1, 1, k/2, k/2) and weight degree
d = k/2.

Proof of Theorem 2. Instead of Proving Theorem 2 we will prove the
following theorem which is equivalent to Theorem 2.

Theorem 4. System (5) with l = 2 or with l = k − 2 does not admit
an additional rational first integral.

We will only prove the case l = k − 2 because the proof of the case
l = 2 is exactly the same interchanging the roles of y1 with y2 and of x1

with x2. The proof follows directly from the following theorem which
is Theorem 2.4 in [2].

Theorem 5. The Hamiltonian system (1) with potential V = q22Ṽ (q1, q2)
where deg Ṽ = k − 2 and Ṽ (q1, 0) ̸= 0, does not admit an additional
rational first integral.

We note that in the case l = k − 2 we have

(7) V (y1, y2) = αy22y
k−2
1 = αy22Ṽ (y1, y2),

where deg Ṽ = k − 2, Ṽ (y1, y2) = Ṽ (y1, 0) = αyk−2
1 . It follows directly

from Theorem 5 that the Hamiltonian system with potential in (7)
does not admit an additional rational first integral independent of the
Hamiltonian one. This concludes the proof. �

3. Proof of Theorem 1

In this section we will prove the following equivalent result to The-
orem 1.

Theorem 6. System (5) with k ≥ 6 even and l = 2, . . . , k
2
− 1, k

2
+

1, . . . k − 2 does not admit an additional analytic first integral.

We first observe that we only need to prove Theorem 6 for the cases
l = 2, . . . , k

2
− 1, because the proof of the cases l = k

2
+ 1, . . . , k − 2 is

exactly the same interchanging the roles of x1 with x2, and y1 with y2.

Before going into the technicalities of the proof of Theorem 6, we
would like to highlight the main idea behind the proof. First we shall
restrict system (5) to the zero level of the first integral H, which is
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a polynomial function. The restriction to this level set gives rise to a
nontrivial rational first integral F̄ of the restricted system. To be more
precise, F̄ (y1, y2, x1) is a polynomial in the variables y1, y2, x1 and x−1

1 .
So, it can be written in the following form:

F̄ =
m∑

j=−ℓ

gj(y1, y2)x
j
1.

We recall again that system (5) is a weight–homogeneous polynomial
differential system with weight exponent (1, 1, k/2, k/2) and weight de-
gree d = k/2. From section 3 it follows that for proving Theorem 6
it is sufficient to show that this system has no weight-homogeneous
polynomial first integrals with weight exponent (1, 1, k/2, k/2).

Let F = F (y1, y2, x1, x2) ∈ C[y1, y2, x1, x2] be a weight-homogeneous
polynomial first integral of system (5) with weight exponent (1, 1, k/2, k/2)
and weight degree d = k

2
n with n ≥ 1. We can express it as

F =
∑

l1+l2+
k
2
l3+

k
2
l4=

k
2
n

Fl1,l2,l3,l4y
l1
1 y

l2
2 x

l3
1 x

l4
2 .

The function F cannot depend only on y1 and y2. Indeed, if F =
F (y1, y2) then from (5) we get

x1
∂F

∂y1
+ x2

∂F

∂y2
= 0,

and consequently F is a constant. So F depends on x1 or x2, and thus
n ≥ 2.

We study the first integral F on the level set H = 0 by eliminating,
for example x2 as follows:

x2 = −2α(−1)l+k/2yl1y
k−l
2

x1

.

Thus, we end up with the following system:

ẏ1 = x1,

ẏ2 = −2α(−1)l+k/2yl1y
k−l
2

x1

,

ẋ1 = −2α(−1)l+k/2(k − l)yl1y
k−l−1
2 .

(8)

Note that the restriction of the polynomial first integral F to the level
set H = 0 can be written as

F̄ =
∑

l1+l2+
k
2
l3+

k
2
l4=

k
2
n

F̄l1,l2,l3y
l1
1 y

l2
2 x

l3
1

(
− 2α(−1)l+k/2yl1y

k−l
2

x1

)l4

=
n∑

j=−n

F̄j(y1, y2)x
j
1

(9)
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where each F̄j(y1, y2) is a homogeneous polynomial of weight degree
M := k

2
(n− j). Indeed, the degree of F̄j(y1, y2) is

l1 + l2 + ll4 + (k − l)l4 = l1 + l2 + kl4.

using that l1 + l2 = n − k
2
(l3 + l4) and l3 − l4 = j we can rewrite the

above expression as

k

2
n− k

2
(l3 + l4) + kl4 =

k

2
n− k

2
l3 +

k

2
l4 =

k

2
n+

k

2
(l4 − l3) =

k

2
(n− j).

Note that system (8) is completely integrable with the first integrals

H1 =
yk−l
2

x1

and H2 =
yl+1
1

l + 1
+

(−1)l+k/2x2
1

2α(k − l + 1)yk−l−1
2

.

Hence

F̄ =
∑
j1,j2

Fj1,j2

( yl+1
1

l + 1
+

(−1)l+k/2x2
1

2α(k − l + 1)yk−l−1
2

)j2

=
∑
j1,j2

j2∑
m=0

F̃j1,j2,m
y
j1(k−l)−m(k−l−1)
2 y

(l+1)(j2−m)
1

xj1−2m
1

.

where

F̃j1,j2,m = Fj1,j2

(
j2
m

)
(−1)m(l+k/2)

(l + 1)j2−m(2α(k − l + 1))m
.

Using that F̄ must satisfy (9), we must have that for any m = 0, . . . , j2,

(j2 −m)(l + 1)−m(k − l − 1) + j1(k − l) =
k

2
n+

k

2
(j1 − 2m)

that is

j2(l + 1) + j1(k − l) =
k

2
n+

k

2
j1

which yields

j2 =
1

l + 1

(k
2
(n− j1) + lj1

)
.

Note that F̄ must be a polynomial in the variables y1 and y2. Thus

j1(k − l)− k − l − 1

l + 1

(k
2
(n− j1) + lj1

)
≥ 0.

This implies that

j1(k − l + 1) ≥ (k − l − 1)n that is j1 ≥
k − l − 1

k − l + 1
n.

Moreover using again (9) we have that j1 ≤ n. Therefore,

F̄ =
∑

(k−l−1)n/(k−l+1)≤j1≤n

βj1,n,k,lH
j1
1 H

(k(n−j1)+2lj1)/(2(l+1))
2 ,

with βj1,n,k,l ∈ C.
To conclude the proof of Theorem 1 it is sufficient to show that

F̄ = 0. Indeed if F̄ = 0 then any weight homogenous polynomial
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first integral with weight exponent (1, 1, k/2, k/2) and weight degree
d = kn/2 restricted to H = 0 is zero and thus system (5) cannot have
a weight homogenous polynomial first integral F with weight exponent
(1, 1, k/2, k/2) and weight degree d = kn/2 independent with H since
otherwise when restricted to H = 0 this first integral would not be
zero.

To show that F̄ = 0, we write

F = F (y1, y2, x1, x2) = F̄ +
(
x2 +

2α(−1)l+k/2yl1y
k−l
2

x1

)
G,

where G is a weight-homogenous polynomial with weight exponent
(1, 1, k/2, k/2) and weight degree d = kn/2. Imposing that F is a

first integral of system (5), after simplifying by x2 +
2α(−1)l+k/2yl1y

k−l
2

x1

and then setting x2 = −2α(−1)l+k/2yl1y
k−l
2

x1
we get

∑
(k−l−1)n/(k−l+1)≤j1≤n

βj1,n,k,lj1(k − l)

y2
Hj1

1 H
(k(n−j1)+2lj1)/(2(l+1))
2

+
∑

(k−l−1)n/(k−l+1)≤j1≤n

βj1,n,k,l(k(n− j1) + 2lj1)(−1)l+k/2(1− k + l)x2
1y

l−k
2

4α(l + 1)(1 + k − l)

·Hj1
1 H

(k(n−j1)+2lj1)/(2(l+1))−1
2 +

2(k − l)(−1)l+k/2yl1y
k−l
2 α

x1y2
G

+ x1
∂G

∂y1
− 2α(−1)l+k/2yl1y

k−l
2

x1

∂G

∂y2
− 2α(−1)l+k/2(k − l)yl1y

k−l−1
2

∂G

∂x1

= 0.

Solving this partial differential equation we obtain

G =
(−1)l+k/2+1(k − l)

2αyl1y2

∑
(k−l−1)n/(k−l+1)≤j1≤n

j1βj1,n,k,lH
j1
1 H

(k(n−j1)+2lj1)/(2(l+1))
2

+
(−1)l+k/2(1− k + l)2x5

1

8(1 + k − l)α2yl1(2αy
l+1
1 (k − l + 1)yk−l−1

2 + (−1)l+k/2(l + 1)x2
1)∑

(k−l−1)n/(k−l+1)≤j1≤n

βj1,n,k,l(k(n− j1) + 2lj1)H
j1
1 H

(k(n−j1)+2lj1)/(2(l+1))
2

+ x1K(H1, H2),

where K is any function in the variables H1 and H2. Since G must be
a polynomial in the variables y1 and y2 and k(n − j1) + 2lj1 ̸= 0 due
to the fact that j1 ≤ n, we must have βj1,n,k,l = 0, i.e. F̄ = 0. This
concludes the proof of the theorem.
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