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Abstract. We consider the 5-dimensional Lorenz system

U ′ = −VW + bV Z,

V ′ = UW − bUZ,

W ′ = −UV,

X′ = −Z,

Z′ = bUV +X

where b ∈ R\{0} and the derivative is with respect to T . This system describes
coupled Rosby waves and gravity waves. First we prove that the number
of functionally independent global analytic first integrals of this differential

system is two. This solves an open question in the paper On the analytic
integrability of the 5-dimensional Lorenz system for the gravity-wave activity,
Proc. Amer. Math. Soc. 142 (2014), 531–537, where it was proved that

this number was two or three. Moreover, we characterize all the invariant
algebraic surfaces of the system, and additionally we show that it has only two
functionally independent Darboux first integrals.

1. Introduction and statement of the main results

E.N. Lorenz constructed in [9] a 5-dimensional 1-parameter differential system
in R5 which describes coupled Rosby waves and gravity waves:

U ′ = −VW + bV Z,

V ′ = UW − bUZ,

W ′ = −UV,

X ′ = −Z,

Z ′ = bUV +X.

(1)

He studied its slow manifolds and in this paper we are interested in studying its
global analytic integrability, its algebraic invariant surfaces and its Darboux first
integrals. More precisely, we want to know what is the maximal number of func-
tionally independent either global analytic or Darboux first integrals that system (1)
can exhibit?. This question has been considered for many other differential equa-
tions and other classes of first integrals not necessarily analytic or Darboux; see for
instance [6, 7, 10] and the references therein.
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Let Ω be an open subset of R5 invariant by the flow of the differential system
(1). A first integral of the differential system (1) in Ω is a C1-function H satisfying

(−VW + bV Z)
∂H

∂U
+ (UW − bUZ)

∂H

∂V

− UV
∂H

∂W
− Z

∂H

∂X
+ (bUV +X)

∂H

∂Z
≡ 0, in Ω.

(2)

Let H1 : Ω1 → R and H2 : Ω2 → R be two first integrals of the 5-dimensional
Lorenz system (1). They are functionally independent in Ω1 ∩Ω2 if their gradients
are linearly independent over a full Lebesgue measure subset of Ω1 ∩ Ω2.

From [9] we know that the 5-dimensional Lorenz system (1) has the polynomial
first integrals

(3) H1 = U2 + V 2 and H2 = V 2 +W 2 +X2 + Z2.

To study the existence of Darboux first integrals we will use the well-known
Darboux theory of integrability. The Darboux theory of integrability in dimension
5 is based on the existence of invariant algebraic hypersurfaces (or Darboux poly-
nomials). For more details see [2, 3] and [5]. This theory is one of the best theories
for studying the existence of first integrals for the polynomial differential systems.

A Darboux polynomial of system (1) is a polynomial f ∈ C[U, V,W,X,Z] \ C
such that

(−VW + bV Z)
∂f

∂U
+ (UW − bUZ)

∂f

∂V

− UV
∂f

∂W
− Z

∂f

∂X
+ (bUV +X)

∂f

∂Z
= Kf,

(4)

for some polynomial K called the cofactor of f and with degree at most one.

Note that f = 0 is an invariant algebraic hypersurface for the flow of system
(1). A polynomial first integral (a first integral which is a polynomial) is a Darboux
polynomial with zero cofactor. We recall that if f ̸∈ R[U, V,W,X,Z] is a Darboux
polynomial then there exists another Darboux polynomial f̄ (the conjugate of f)
with cofactor K̄ (the conjugate of K).

An exponential factor F = F (U, V,W,X,Z) of system (1) is a function of the
form F = exp(g0/g1) ̸∈ C with g0, g1 ∈ C[U, V,W,X,Z] coprime satisfying that

(−VW + bV Z)
∂F

∂U
+ (UW − bUZ)

∂F

∂V

− UV
∂F

∂W
− Z

∂F

∂X
+ (bUV +X)

∂F

∂Z
= LF,

for some polynomial L = L(U, V,W,X,Z) called the cofactor of F and with degree
at most one. We recall that if F ̸∈ R[U, V,W,X,Z2] is an exponential factor then
there exists another exponential factor F̄ (the conjugate of F ) with cofactor L̄ (the
conjugate of L).

A Darboux first integral G of system (1) is a first integral of the form

(5) G=f
λ1
1 · · · fλp

p Fµ1

1 · · ·Fµq
q ,

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential factors
and λj , µk ∈ C for j = 1, . . . , p and k = 1, . . . , q. Note that a Darboux first
integral is always a real function due to the fact that if there are complex Darboux
polynomials or complex exponential factors always also appear their conjugates.
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In [8] the authors studied system (1) from the view point of the analytic in-
tegrability. We recall that when H is an analytic function we say that H is an
analytic first integral and when the domain of definition is R5 then H is called a
global analytic first integral. Additionally, they show that when b = 0 the system
is completely integrable with four functionally independent first integrals (not nec-
essarily analytic), and that when b ̸= 0 the number of functionally independent
global analytic first integrals is either two or three.

In this paper first we prove that the differential system (1) has only two global
analytic first integrals. After we characterize the Darboux first integrals of system
(1). We recall that the class of Darboux first integrals and the class of global
analytic first integrals have intersection but they are different classes. We also
characterize the invariant algebraic surfaces and the so-called exponential factors.

Our main result is the following one.

Theorem 1. The following statements hold for the differential system (1) with
b ̸= 0.

(a) Any global analytic first integral must be a function in the variables H1 and
H2 given in (3).

(b) It has two irreducible Darboux polynomials U+iV and U−iV with non–zero
cofactors i(W − bZ) and −i(W − bZ), respectively.

(c) It has only two functionally independent Darboux first integrals.

Theorem 1 (a) completes the characterization of the global analytic first integrals
of system (1) which was unfinished in [8]. Theorem 1 (b) characterizes all its
invariant algebraic hypersurfaces, and Theorem 1 (c) characterizes all the Darboux
first integrals of system (1).

Theorem 1 (a) is proved in section 2. Theorem 1 (b) is proved in section 3 and
Theorem 1 (c) is proved in section 4.

2. Proof of Theorem 1(a)

We prove the following proposition which is exactly the statement (a) of Theo-
rem 1.

Proposition 2. Any global analytic first integral must be a function in the variables
H1 = U2 + V 2 and H2 = V 2 +W 2 +X2 + Y 2.

Proof. Let H be an analytic first integral of system (1) with b ̸= 0. Then by
definition we have that H must satisfy (2). We expand H in Taylor series

H =

∞∑
j=m

Hj(U, V,W,X,Z)

where m ≥ 1 is a positive integer, and Hj for j = m,m + 1, . . . , are homogeneous
polynomials of degree j. Comparing the homogeneous polynomials in (2) of the
same degree, we get

(6) −Z
∂Hm

∂X
+X

∂Hm

∂Z
= 0,

−Z
∂Hj+1

∂X
+X

∂Hj+1

∂Z
= V (W − bZ)

∂Hj

∂U
− U(W − bZ)

∂Hj

∂V

+ UV
∂Hj

∂W
− bUV

∂Hj

∂Z
,

(7)



4 J. LLIBRE AND C. VALLS

for j = m,m + 1, . . .. The characteristic equation associated with the linear par-
tial differential equation (6) has the first integral X2 + Z2, so by the method of
characteristic curves for solving linear partial differential equations we get that the
general solution of (6) is

Hm(U, V,W,X,Z) = G̃m(A,U, V,W ),

where G̃m must be a polynomial function in its variables because Hm is a homoge-
neous polynomial of degree m in the variables U, V,W,X,Z.

For j ≥ m sinceX2+Z2 is a first integral of the characteristic equation associated
with −Z∂Hj+1/∂X +X∂Hj+1/∂Z = 0 we make the change of variables

(8) A = X2 + Z2, Z = Z

Then equation (7) becomes the ordinary differential equation√
A− Z2

dH̃j+1

dZ
= V (W − bZ)

∂H̃j

∂U
− U(W − bZ)

∂H̃j

∂V

+ UV
∂H̃j

∂W
− 2bUV Z

∂H̃j

∂A
,

(9)

where for j ≥ m, H̃j is Hj written in the variables A,U, V,W,Z instead of the

variables U, V,W,X,Z. Note that for j = m we have H̃m = G̃m(A,U, V,W ) and

dH̃m+1

dZ
=

(
V (W − bZ)

∂G̃m

∂U
− U(W − bZ)

∂G̃m

∂V
+ UV

∂G̃m

∂W

− 2bUV Z
∂G̃m

∂A

)
1√

A− Z2
=

s1 + s2Z√
A− Z2

,

(10)

where

s1 = s1(U, V,W,A) = VW
∂G̃m

∂U
− UW

∂G̃m

∂V
+ UV

∂G̃m

∂W
,

s2 = s2(U, V,W,A) = −bV
∂G̃m

∂U
+ bU

∂G̃m

∂V
− 2bUV

∂G̃m

∂A
.

Integrating this ordinary differential equation with respect to Z, we get

H̃m+1(A,U, V,W,Z) = s1 arctan
Z√

A− Z2
− s2

√
A− Z2 + G̃m+1(A,U, V,W ),

where G̃m+1 is an integrating constant with respect to Z. SinceHm+1 = Hm+1(U, V,W,X,Z)
is a homogeneous polynomial of degree m+ 1, we must have s1 = 0, that is

(11) VW
∂G̃m

∂U
− UW

∂G̃m

∂V
+ UV

∂G̃m

∂W
= 0.

The characteristic equations associated with this last partial differential equation
(11) is g(B,C), with B = U2+V 2, C = V 2+W 2 and g any continuous differentiable
function. This forces that

Hm(U, V,W,X,Z) = G̃m(A,U, V,W ) = Rm(A,B,C),

with Rm a homogeneous polynomial in the variables A,B,C. So m must be even.
Then s2 becomes

s2 = −2bUV
(∂Rm

∂A
− ∂Rm

∂C

)
= −2bUV S̃m, S̃m = S̃m(A,B,C) =

∂Rm

∂A
− ∂Rm

∂C
.
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Then

(12) H̃m+1 = 2bUV
√
A− Z2S̃m + G̃m+1(A,U, V,W ).

Equation (9) with j = m+ 1 becomes

√
A− Z2

dH̃m+2

dZ
= V (W − bZ)

∂H̃m+1

∂U
− U(W − bZ)

∂H̃m+1

∂V
+ UV

∂H̃m+1

∂W

− 2bUV Z
∂H̃m+1

∂A

= s3 + s4Z + s5
√
A− Z2 + s6Z

√
A− Z2 − Z√

A− Z2
s7,

where

s3 = s3(U, V,W,A) = VW
∂G̃m+1

∂U
− UW

∂G̃m+1

∂V
+ UV

∂G̃m+1

∂W
,

s4 = s4(U, V,W,A) = −bV
∂G̃m+1

∂U
+ bU

∂G̃m+1

∂V
− 2bUV

∂G̃m+1

∂A
,

s5 = s5(U, V,W,A) = VW
(
2bV S̃m + 2bUV

∂S̃m

∂U

)
− UW

(
2bUS̃m + 2bUV

∂S̃m

∂V

)
+ 2bU2V 2 ∂S̃m

∂W
,

s6 = s6(U, V,W,A) = −bV
(
2bV S̃m + 2bUV

∂S̃m

∂U

)
+ bU

(
2bUS̃m + 2bUV

∂S̃m

∂V

)
− 4b2U2V 2 ∂S̃m

∂A
,

s7 = s7(U, V,W,A) = −4b2U2V 2S̃m.

Solving it we get

H̃m+2 = s3 arctan
Z√

A− Z2
− s4

√
A− Z2 + s5Z +

s6
2
Z2

+
s7
2
log(Z2 −A) + G̃m+2(A,U, V,W ),

(13)

where G̃m+2 is an integrating constant with respect to Z. Since the polynomial
Hm+2 = Hm+2(U, V,W,X,Z) is homogeneous of degree m+ 2, we must have s3 =

s7 = 0. From s3 = 0, as before for s1 = 0, we get that G̃m+1 must satisfy equation

(11) with G̃m+1 instead of G̃m, and so G̃m+1 = Rm+1(A,B,C), being Rm+1 a

homogeneous polynomial of degree m+ 1. From s7 = 0 we must have S̃m = 0. We
write

(14) Rm(A,B,C) =
m∑
l=0

m−l∑
k=0

ak,lB
lAkCm−l−k.
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Hence

S̃m =
∂Rm

∂A
− ∂Rm

∂C

=
m∑
l=0

Bl

(m−l∑
k=0

kak,lA
k−1Cm−l−k −

m−l∑
k=0

(m− l − k)ak,lA
kCm−l−k−1

)

=

m∑
l=0

Bl

(m−l−1∑
k=0

(
(k + 1)ak+1,l − (m− l − k)ak,l

)
AkCm−l−k−1

)
= 0,

and so for each l = 0, . . . ,m we must have

m−l−1∑
k=0

(
(k + 1)ak+1,l − (m− l − k)ak,l

)
AkCm−l−k−1 = 0.

That is

ak,l = ak−1,l
m− l − k + 1

k
for k = 1, . . . ,m− l

which yields

ak,l = a0,l

(
m− l

k

)
.

Hence, it follows from (15) that

Rm(A,B,C) =

m∑
l=0

Bl
m−l∑
k=0

a0,l

(
m− l

k

)
AkCm−l−k

=
m∑
l=0

Bla0,l(A+ C)m−l = Rm(A+ C,B)

= Rm(V 2 +W 2 +X2 + Z2, U2 + V 2).

(15)

Moreover, from (12) using that S̃m = 0 and that G̃m+1 = Rm+1(A,B,C) we get
that

H̃m+1(A,U, V,W,Z) = Rm+1(A,B,C).

Since Hm+1 is a homogeneous polynomial of odd degree, we must have

G̃m+1 ≡ 0,

because G̃m+1 cannot be of odd degree by its expression. Then from (13) using

that S̃m = G̃m+1 = 0, we obtain

H̃m+2 = G̃m+2(A,U, V,W ), and Hm+2 = Gm+2(X
2 + Z2, U, V,W ),

where Hm+2 is a homogeneous polynomial of degree m+ 2.

Proceeding by induction we can show that

G̃m+2k(A,U, V,W,Z) = Rm+2k(A+ C,B)

= Rm+2k(V
2 +W 2 +X2 + Z2, U2 + V 2),

G̃m+2k−1(A,U, V,W,Z) = 0,

for k = 1, . . . , where Rm+2k are homogeneous functions in A + C,B. This proves
the theorem. �
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3. Proof of Theorem 1(b)

To prove Theorem 1(b) we need to characterize the Darboux polynomials with
non–zero cofactor.

We introduce the new variables Y1 = U+iV and Y2 = U−iV and rewrite system
(1) in these new variables as

Y ′
1 = iY1(W − bZ),

Y ′
2 = −iY2(W − bZ),

W ′ =
i

4
(Y 2

1 − Y 2
2 ),

X ′ = −Z,

Z ′ = − ib

4
(Y 2

1 − Y 2
2 ) +X.

(16)

The proof of Theorem 1(b) can be reformulated as follows.

Theorem 3. The unique irreducible Darboux polynomials of system (16) with non–
zero cofactor are Y1 and Y2 with cofactors i(W −bZ) and −i(W −bZ), respectively.

Let f be a Darboux polynomial of system (16) with non–zero cofactor. Then f
satisfies

iY1(W − bZ)
∂f

∂Y1
− iY2(W − bZ)

∂f

∂Y2
+

( i

4
(Y 2

1 − Y 2
2 )

) ∂f

∂W

− Z
∂f

∂X
+
(
− ib

4
(Y 2

1 − Y 2
2 ) +X

) ∂f

∂Z
= Kf,

(17)

where K = α0 + α1Y1 + α2Y2 + α3W + α4X + α5Z with αi ∈ C for i = 0, . . . , 5.

We write K = α0 + α1Y1 + α2Y2 +K1 where K1 = α3W + α4X + α5Z.

We separate the proof into the next two propositions.

Proposition 4. The unique irreducible Darboux polynomials of system (16) with
cofactor K1 ̸= 0 are Y1 and Y2 with cofactors i(W − bZ) and −i(W − bZ), respec-
tively.

Proof. It is easy to check that the unique Darboux polynomials of system (16) of
degree one with K1 ̸= 0 are Y1 and Y2 with cofactors i(W − bZ) and −i(W − bZ),
respectively. We will see that they are the unique irreducible ones.

Let f = f(Y1, Y2,W,X,Z) be an irreducible Darboux polynomial of system (16)
with degree n ≥ 2 and with cofactor K1 ̸= 0. We consider two different cases.

Case 1: K1 ̸= iα(W − bZ) for any α > 0. We restrict system (16) to Y2 = 0 that
is we consider system

Y ′
1 = iY1(W − bZ),

W ′ =
i

4
Y 2
1 ,

X ′ = −Z,

Z ′ = − ib

4
Y 2
1 +X.

(18)
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Let g = g(Y1,W,X,Z) = f(Y1, 0,W,X,Z) that is, the polynomial f restricted to
Y2 = 0, so g satisfies

iY1(W − bZ)
∂g

∂Y1
+

i

4
Y 2
1

∂g

∂W
− Z

∂g

∂X
+
(
− ib

4
Y 2
1 +X

) ∂g

∂Z
= (α0 + α1Y1 +K1)g.

We write g as sum of its homogeneous parts as g =
∑n

i=0 gi where gi = gi(Y1,W,X,Z)
is a homogeneous polynomial of degree i. Clearly, gn satisfies

(19) iY1(W − bZ)
∂gn
∂Y1

+
i

4
Y 2
1

∂gn
∂W

− ib

4
Y 2
1

∂gn
∂Z

= (α1Y1 +K1)gn.

We consider two subcases.

Subcase 1.1: gn is not divisible by Y1. In this case if we restrict gn to Y1 = 0 and
denote it by ḡn then ḡn ̸= 0. Moreover ḡn satisfies (19) restricted to Y1 = 0. So ḡn
satisfies 0 = K1ḡn, so ḡn = 0 which is not possible.

Subcase 1.2: gn is divisible by Y1. In this case we can write gn = Y ℓ
1 hn with

1 ≤ ℓ ≤ n and hn is a homogeneous polynomial of degree n − ℓ. If we restrict hn

to Y1 = 0 and denote it by h̄n then h̄n ̸= 0 and satisfies, after simplifying by Y ℓ
1 ,

we get

iY1(W − bZ)
∂hn

∂Y1
+

i

4
Y 2
1

∂hn

∂W
− ib

4
Y 2
1

∂hn

∂Z
= (α1Y1 +K1 − iℓ(W − bZ))hn.(20)

Now if we restrict hn to Y1 = 0 and denote it by h̄n then h̄n ̸= 0. Moreover h̄n

satisfies (20) restricted to Y1 = 0. So h̄n satisfies

0 = (K1 − iℓ(W − bZ))h̄n,

and by assumptions K1− iℓ(W −bZ) ̸= 0 which yields ḡn = 0 which is not possible.

Case 2: K1 = iα(W − bZ) for some α > 0. We restrict system (16) to Y1 = 0 that
is we consider system

Y ′
2 = −iY2(W − bZ),

W ′ = − i

4
Y 2
2 ,

X ′ = −Z,

Z ′ =
ib

4
Y 2
2 +X.

(21)

Let g = g(Y2,W,X,Z) = f(0, Y2,W,X,Z) that is, the polynomial f restricted to
Y1 = 0, so g satisfies

− iY2(W − bZ)
∂g

∂Y2
− i

4
Y 2
2

∂g

∂W
− Z

∂g

∂X
+
( ib
4
Y 2
2 +X

) ∂g

∂Z
= (α0 + α2Y2 +K1)g.

We write g as sum of its homogeneous parts as g =
∑n

i=0 gi where gi = gi(Y1,W,X,Z)
is a homogeneous polynomial of degree i. Clearly, gn satisfies

(22) −iY2(W − bZ)
∂gn
∂Y2

− i

4
Y 2
2

∂gn
∂W

+
ib

4
Y 2
2

∂gn
∂Z

= (α2Y2 +K1)gn.

We consider two subcases.

Subcase 2.1: gn is not divisible by Y2. In this case if we restrict gn to Y2 = 0 and
denote it by ḡn then ḡn ̸= 0. Moreover ḡn satisfies (22) restricted to Y2 = 0. So ḡn
satisfies 0 = K1ḡn and so ḡn = 0 which is not possible.
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Subcase 2.2: gn is divisible by Y2. In this case we can write gn = Y ℓ
2 hn with

1 ≤ ℓ ≤ n and hn is a homogeneous polynomial of degree n − ℓ. If we restrict hn

to Y2 = 0 and denote it by h̄n then h̄n ̸= 0 and satisfies, after simplifying by Y ℓ
2 ,

we get

− iY2(W − bZ)
∂hn

∂Y1
− i

4
Y 2
2

∂hn

∂W
+

ib

4
Y 2
2

∂hn

∂Z

= (α2Y2 +K1 + iℓ(W − bZ))hn = i(ℓ+ α)(W − bZ)hn.
(23)

Now if we restrict hn to Y2 = 0 and denote it by h̄n then h̄n ̸= 0. Moreover h̄n

satisfies (23) restricted to Y2 = 0. So h̄n satisfies

0 = i(ℓ+ α)(W − bZ)h̄n,

and by assumptions ℓ+ α > 0 which yields h̄n = 0 which is not possible. �

Now assume that K1 = 0, so K = α0+α1Y1+α2Y2. We will prove the following
proposition which together with Proposition 4 implies the proof of Theorem 1(b).

Proposition 5. System (16) has no irreducible Darboux polynomials with cofactor
K = α0 + α1Y1 + α2Y2 ̸= 0.

Proof. Let f be an irreducible Darboux polynomial with non-zero cofactor K =
α0 + α1Y1 + α2Y2 ̸= 0. Let τ : C[Y1, Y2,W,X,Z] → C[Y1, Y2,W,X,Z] be the auto-
morphism

(24) τ(Y1, Y2,W,X,Z) = (−Y1,−Y2,W,X,Z).

and consider the polynomial g = f · τf that is invariant by τ with a cofactor of the
form Kτ = 2α0. We consider two different cases.

Case 1: α0 = 0. In this case since K ̸= 0 we must have α2
1 +α2

2 ̸= 0. Note that g is
a Darboux polynomial with zero cofactor, that is, it is a polynomial first integral.
In view of Theorem 1(a) we must have g = g(G1, G2), where

G1 = H1(U, V ) = H1

(Y1 + Y2

2
,
Y1 − Y2

2i

)
= Y1Y2,

G2 = H2(V, Y,X,Z) = H2

(Y1 − Y2

2i
, Y,X,Z

)
= X2 + Z2 +W 2 − 1

4
(Y 2

1 + Y 2
2 − 2Y1Y2).

(25)

Since τ(Y1) = −Y1, τ(Y2) = −Y2 and τ(Gi) = Gi for i = 1, 2, we must have
f = f(G1, G2). But then f is a Darboux polynomial with zero cofactor, that is,
α1 = α2 = 0 which is not possible. So, this case is not possible.

Case 2: α0 ̸= 0. In this case, proceeding as in the proof of Proposition 4, let g̃ =
g̃(Y2,W,X,Z) = g(0, Y2,W,X,Z) that is, the polynomial f restricted to Y1 = 0, so
g̃ satisfies

−iY2(W − bZ)
∂g̃

∂Y1
− i

4
Y 2
2

∂g̃

∂W
− Z

∂g̃

∂X
+
( ib
4
Y 2
2 +X

) ∂g̃

∂Z
= 2α0g̃.

We write g̃ as sum of its homogeneous parts as g̃ =
∑n

i=0 g̃i where g̃i = g̃i(Y2,W,X,Z)
is a homogeneous polynomial of degree i. Clearly, g̃n satisfies

−iY2(W − bZ)
∂g̃n
∂Y2

− i

4
Y 2
2

∂g̃n
∂W

+
ib

4
Y 2
2

∂g̃n
∂Z

= 0.
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Solving this linear partial differential equation we get that g̃n = g̃n(X, bW +
Z,−Y 2

2 + 4W ((1 − b2)W − 2bZ)), and since must be a polynomial of degree n
we obtain

g̃n = aXn−2k−ℓ(bW + Z)ℓ
(
− Y 2

2 + 4W ((1− b2)W − 2bZ)
)k
.

Moreover g̃n−1 satisfy

− iY2(W − bZ)
∂g̃n−1

∂Y2
− i

4
Y 2
2

∂g̃n−1

∂W
+

ib

4
Y 2
2

∂g̃n−1

∂Z

= aX−2k−ℓ+n−1(bW + Z)ℓ−1(−4b2W 2 + 4W 2 − 8bZW − Y 2
2 )

k−1

((
ℓX2−

2bWα0X − 2Zα0X + 2kZ2 + ℓZ2 − nZ2 + 2bkWZ + bℓWZ − bnWZ
)
Y 2
2

+ 4W
(
2kW 2Zb3 + ℓW 2Zb3 − nW 2Zb3 − 2W 2Xα0b

3 + 2kWX2b2+

ℓWX2b2 + 6kWZ2b2 + 3ℓWZ2b2 − 3nWZ2b2 − 6WXZα0b
2 + 4kZ3b+

2ℓZ3b− 2nZ3b− 2kW 2Zb− ℓW 2Zb+ nW 2Zb+ 2kX2Zb+ 2ℓX2Zb−

4XZ2α0b+ 2W 2Xα0b− ℓWX2 − 2kWZ2 − ℓWZ2 + nWZ2 + 2WXZα0

))
.

Restricting it to Y2 = 0 and using that α0 ̸= 0 we obtain that g̃n = 0 and so g is
divisible by Y1. Proceeding in the same way we get that g must be divisible by Y2

and so g = Y1Y2h. Therefore, h is a homogeneous polynomial of degree n−2. Then
h also satisfies the same as g because Y1Y2 is a first integral. Proceeding as we did,
we get that h is divisible by Y1Y2. Proceeding inductively, we get that n is even
and g = (Y1Y2)

n/2a0. So g is a first integral with zero cofactor, a contradiction.
This concludes the proof. �

4. Proof of Theorem 1(c)

Note that it follows from Theorem 1(a) that the unique Darboux polynomials of
system (1) with zero cofactor (that is, the polynomial first integrals) of system (1)
are polynomials in the variables H1 and H2.

We introduce several auxiliary results. The first one was proved in [4].

Lemma 6. Let f be a polynomial and f =
s∏

j=1

f
αj

j its decomposition into irreducible

factors in C[U, V,W,X,Z]. Then f is a Darboux polynomial if and only if all the
fj are Darboux polynomials. Moreover, if K and Kj are the cofactors of f and fj,

then K =
s∑

j=1

αjKj.

In view of Theorem 1(a) if f is a Darboux polynomial (or f = 0 is an invariant
algebraic surface) then f = Y n1

1 Y n2
2 Gn3

2 where n1, n2, n3 ∈ N∪ {0} (see (25)). The
second result that we will need is proved in [1].

Proposition 7. The following statements hold.

(a) If E = exp(g0/g) is an exponential factor for the polynomial system (16)
and g is not a constant polynomial, then g = 0 is an invariant algebraic
hypersurface.
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(b) Eventually eg0 can be an exponential factor, coming from the multiplicity
of the infinite invariant hyperplane.

In view of the above explanation and Proposition 7 if F = exp(h/g) is an expo-
nential factor of system (16) then it must be of the form F = exp(h/(Y n1

1 Y n2
2 Gn3

2 ))
with h ∈ C[Y1, Y2,W,X,Z] and n1, n2, n3 ∈ N ∪ {0}, with h coprime with Y1

if n1 > 0; h coprime with Y2 if n2 > 0 and h coprime with G2 if n3 > 0.
Moreover, since the cofactor must have at most degree one we can write it as
L = β0 + β1Y1 + β2Y2 + β3W + β4X + β5Z. So, h must satisfy,

iY1(W − bZ)
∂h

∂Y1
− iY2(W − bZ)

∂h

∂Y2
+

i

4
(Y 2

1 − Y 2
2 )

∂h

∂W
− Z

∂h

∂X

+
(
− ib

4
(Y 2

1 − Y 2
2 ) +X

) ∂h

∂Z
− i(n1 − n2)(W − bZ)h

= Y n1
1 Y n2

2 Gn3
2 (β0 + β1Y1 + β2Y2 + β3W + β4X + β5Z).

(26)

We will prove that n1 = n2. Indeed, we consider two cases.

Case 1: n1 > n2. In this case, evaluating (26) on Y1 = 0, and denoting by h̄ the
restriction of h to Y1 = 0, that is h̄ = h̄(Y2,W,X,Z) = h(0, Y2,W,X,Z) we have

− iY2(W − bZ)
∂h̄

∂Y2
− i

4
Y 2
2

∂h̄

∂W
− Z

∂h̄

∂X
+
( ib
4
Y 2
2 +X

) ∂h̄

∂Z

= i(n1 − n2)(W − bZ)h̄.

So h̄ is either zero or a Darboux polynomial of system (21) with cofactor i(n1 −
n2)(W − bZ). The first case is not possible because h is coprime with Y1. The
other case is also not possible because the cofactor of h̄ is of the form iα(W − bZ)
for some α > 0, and so it follows from the proof of Case 2 in Proposition 4 that
h̄ = 0 which is not possible.

Case 2: n1 < n2. In this case, evaluating (26) on Y2 = 0, and denoting by h̄ the
restriction of h to Y2 = 0, we obtain

iY1(W − bZ)
∂h̄

∂Y2
+

i

4
Y 2
1

∂h̄

∂W
− Z

∂h̄

∂X
+
(
− ib

4
Y 2
1 +X

) ∂h̄

∂Z

= i(n1 − n2)(W − bZ)h̄.

So h̄ is either zero or a Darboux polynomial of system (18) with cofactor i(n1 −
n2)(W −bZ). The first case is not possible because h is coprime with Y2. The other
case is also not possible because the cofactor of h̄ is of the form −iα(W − bZ) for
some α > 0, and so it follows from the proof of Case 1 in Proposition 4 that h̄ = 0
which is not possible.

Hence n1 = n2 and F = exp(h/(Gn1
1 Gn3

2 )) and satisfies

iY1(W − bZ)
∂h

∂Y1
− iY2(W − bZ)

∂h

∂Y2
+

i

4
(Y 2

1 − Y 2
2 )

∂h

∂W
− Z

∂h

∂X

+
(
− ib

4
(Y 2

1 − Y 2
2 ) +X

) ∂h

∂Z
= Gn1

1 Gn3
2 (β0 + β1Y1 + β2Y2 + β3W + β4X + β5Z).

(27)

Now we need the following result whose proof can be found in [4].
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Theorem 8. Suppose that system (16) admits p Darboux polynomials fi with cofac-
tors ki and q exponential factors Fj with cofactors ℓj. Then there exists λj , µj ∈ C
not all zero such that

q∑
i=1

λkki +

q∑
i=1

µiℓi = 0

if and only if the function G given in (5) (called of Darboux type) is a first integral
of system (16).

In view of Theorem 8 if G is a Darboux first integral it must be of the form

G = Y λ1
1 Y λ2

2 Gλ3
2 exp(µ1h/(G

n1
1 Gn3

2 ))

whose cofactor KG is

KG = i(λ1 − λ2)(W − bZ) + µ1(β0 + β1Y1 + β2Y2 + β3W + β4X + β5Z).

Since G is a first integral we must have KG = 0. This yields that either µ1 = 0 and
λ1 = λ2 or µ1 ̸= 0 and β0 = β1 = β2 = β4 = 0, β5 = −bβ3 and λ1 − λ2 = −iβ3µ1.
In the first case G = Gλ1

1 Gλ2
2 and so G is a Darboux first integral in the variables

G1 and G2.

In the second case we have F = exp(h/(Gn1
1 Gn2

2 )) with cofactor L = β3(W−bZ).
Imposing this in (27) we get that h must satisfy

iY1(W − bZ)
∂h

∂Y1
− iY2(W − bZ)

∂h

∂Y2
+

i

4
(Y 2

1 − Y 2
2 )

∂h

∂W
− Z

∂h

∂X

+
(
− ib

4
(Y 2

1 − Y 2
2 ) +X

) ∂h

∂Z
= β3(W − bZ)Gn1

1 Gn2
2 .

(28)

We will show that β3 = 0. We consider different cases. If deg h ≤ 2n1 + 2n3 it
follows from (28) that β3 = 0. So, deg h ≥ 2n1 + 2n3 + 1. Moreover, if deg h =
2n1 + 2n3 + 1 then it follows from (28) that

−Z
∂h

∂X
+X

∂h

∂Z
= β3G

n1
1 Gn3

3 (W − bZ).

With the change of variables in (8) and using the notation of Proposition 7 we have
that the above equation is equivalent to√

A− Z2
dh̃

dZ
= β3(U

2 + V 2)n1(V 2 +W 2 +A2)n3(W − bZ).

Proceeding again as in (10) with

s1 = β3(U
2 + V 2)n1(V 2 +W 2 +A2)n3W,

s2 = −bβ3(U
2 + V 2)n1(V 2 +W 2 +A2)n3 ,

we conclude that s1 = 0 and so β3 = 0. Hence, we can assume that deg h >
2n1 + 2n3 + 1. We write deg h = 2n1 + 2n3 + 1 + k for some k > 0. Proceeding as
in the proof of Proposition 7 we get that if we expand h is its homogeneous parts

as h =
∑2n1+2n3+1+k

j=m hj , then m is even and h2j = h2j(A + C,B), h2j+1 = 0 for

j = m/2, . . . , n1 +n3 − 1. Then h2n1+2n3 satisfies (6) and proceeding as in proof of
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Proposition 7 we get that h2n1+2n3 = G̃2n1+2n3(A,U, V,W ) and h2n1+2n3+1 satisfies

dh̃2n1+2n3+1

dZ
=

(
V (W − bZ)

∂G̃2n1+2n3

∂U
− U(W − bZ)

∂G̃2n1+2n3

∂V
+ UV

∂G̃2n1+2n3

∂W

− 2bUV Z
∂G̃2n1+2n3

∂A
+ β3G

n1
1 Gn3

3 (W − bZ)

)
1√

A− Z2
=

s1 + s2Z√
A− Z2

,

which is (10) with

s1 = s1(U, V,W,A) = VW
∂G̃2n1+2n3

∂U
− UW

∂G̃2n1+2n3

∂V
+ UV

∂G̃2n1+2n3

∂W

+ β3(U
2 + V 2)n1(V 2 +W 2 +A2)n3W,

s2 = s2(U, V,W,A) = −bV
∂G̃2n1+2n3

∂U
+ bU

∂G̃2n1+2n3

∂V
− 2bUV

∂G̃2n1+2n3

∂A

− bβ3(U
2 + V 2)n1(V 2 +W 2 +A2)n3 .

Proceeding again as in the proof of Proposition 7 we get that s1 = 0 that is

VW
∂G̃2n1+2n3

∂U
− UW

∂G̃2n1+2n3

∂V
+ UV

∂G̃2n1+2n3

∂W

+ β3(U
2 + V 2)n1(V 2 +W 2 +A2)n3W = 0.

Introducing the change of variables B = U2+V 2, C = V 2+W 2 with inverse change
U =

√
B − V 2,W =

√
C − V 2 we rewrite s1 = 0 as√

B − V 2
√
C − V 2

dĜ2n1+2n3

dV
= β3

√
C − V 2Bn1(C2 +A2)n3 ,

where Ĝ2n1+2n3 = Ĝ2n1+2n3(A,B,C) = G̃2n1+2n3(A,U, V,W ). Solving this differ-
ential equation we obtain

Ĝ2n1+2n3 = β3B
n1(C2 +A2)n3 arctan

V√
B − V 2

.

Since G2n1+2n3 must be a polynomial we must have β3 = 0.

We have proved that β3 = 0, and so βi = 0 for i = 0, . . . , 5. This im-
plies that L = 0 and h must be a polynomial first integral. In view of Theo-
rem 1(a) we have h = h(G1, G2). Moreover λ1 = λ2 because β3 = 0 and so

G = Gλ1
1 Gλ3

2 exp(h(G1, G2)/(G
n1
1 Gn3

2 ) which clearly implies that G is a Darboux
first integral in the variables G1 and G2. This concludes the proof of Theorem 1(c).
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(Mélanges), Bull. Sci. Math. 2éme série 2 (1878), 60–96, 123–144, 151–200.



14 J. LLIBRE AND C. VALLS

[3] G. Darboux, De l’emploi des solutions particulières algébriques dans l’intégration des
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[7] I.A. Garćıa, M. Grau and J. Llibre, First integrals and Darboux polynomials of natural
polynomial Hamiltonian systems, Phys. Lett. A 374 (2010), 4746–4748.

[8] J. Llibre, R. Saghin and X. Zhang, On the analytic integrability of the 5-dimensional
Lorenz system for the gravity-wave activity, Proc. Amer. Math. Soc. 142 (2014), 531–537.

[9] E.N. Lorenz, On the existence of a slow manifold, J. Atmospheric Sci. 43 (1986), 1547–1557.
[10] S.I. Popov and J..M. Strelcyn, On rational integrability of Euler equation on Lie algebra

so(4,C), revisited, Phys. Lett. A 373 (2009), 2445–2453.
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