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PERIODIC ORBITS OF THE PLANAR ANISOTROPIC
GENERALIZED KEPLER PROBLEM

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. Many generalizations of the Kepler problem with homogeneous po-
tential of degree −1/2 have been considered. Here we deal with the generalized
anisotropic Kepler problem with homogeneous potential of degree −1. We provide
the explicit solutions of this problem on the zero energy level, and show that all of
them are periodic.

1. Introduction and statement of the main result

The classical Kepler problem describes the motion of the two-body problem un-
der the mutual gravitational attraction given by the Newtonian’s universal law of
gravitation.

In the papers [2, 9, 10, 11, 13, 14, 16] different generalizations of the Kepler problem
with homogeneous potential of degree −1/2 have studied, for instance generalizations
to n-dimensional curved spaces, to charge quantization, to Euclidean Jordan algebra,
to their integrability with Clifford algebras or with Lie algebras in quantum mechan-
ics.

In the papers [5, 6, 7, 8] Gutzwiller generalized the Kepler problem to describe the
motion of two-body in an anisotropic configuration plane with homogeneous potential
of degree −1/2. Gutzwiller research wanted to find an approximation of the quantum
mechanical energy levels for a chaotic system. Recently in the papers [1, 3, 15]
some dynamics and periodic orbits of this anisotropic Kepler problem were studied
analytically.

Here we generalize the anisotropic Kepler problem from homogeneous potential of
degree −1/2 to homogeneous potential of degree −1. More precisely, the equations
of motion of the planar anisotropic Kepler problem with homogeneous potential of
degree −1 in Hamiltonian formulation are described by the Hamiltonian

(1) H = H(x, y, px, py) =
1

2
(p2x + p2y)−

1

(1 + ε)x2 + y2
.

being |ε| > 0 a small parameter which provides the anisotropy in the direction of the
x–axis.

2010 Mathematics Subject Classification. Primary 34C05, 34A34, 34C14.
Key words and phrases. Anisotropic generalized Kepler problem, periodic orbits, McGehee

coordinates.
1



2 J. LLIBRE AND C. VALLS

Note that the angular momentum for system (1) is not a first integral due to the
fact that the anisotropy of the plane destroys the rotational invariance.

Our main result is the following one.

Theorem 1. We consider the generalized anisotropic Kepler problem with homoge-
neous potential of degree −1 given by Hamiltonian (1). Then:

(a) The energy level H = 0 is diffeomorphic to the manifold S1 × S1 × R.
(b) We provide the explicit expression of all orbits of the Hamiltonian system with

Hamiltonian (1) on the energy level H = 0, and all of them are periodic.

Theorem 1 is proved in section 2.

2. The proof

The Hamiltonian equations associated to the Hamiltonian (1) are

(2)

ẋ = px,

ẏ = py,

ṗx = − 2x(1 + ε)

((1 + ε)x2 + y2)2
,

ṗy = − 2y

((1 + ε)x2 + y2)2
.

Here the dot denotes derivative with respect to the time t. We note that the phase
space of this Hamiltonian system is the set of points (x, y, px, py) of (R2\{(0, 0)})×R2.

The key in the proof of Theorem 1 is to work in the so called McGehee coordinates,
see [12, 4]. Thus we consider the coordinate transformation (x, y, px, py) → (r, θ, u, v)
defined by

r =
√
x2 + y2,

θ = arctan
(y
x

)
,

u = r(−px sin θ + py cos θ),

v = r(px cos θ + py sin θ).

and the rescaling of time
dτ = r−2 dt.

With this transformation, which is an analytic diffeomorphism in its domain of defi-
nition, system (2) becomes

r′ = rv,

θ′ = u,

u′ = −V ′(θ),

v′ = u2 + v2 + 2V (θ),

(3)
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where

V (θ) =
1

(1 + ε) cos2 θ + sin2 θ
,

and the prime denotes derivative with respect the new time τ . The energy relation
(1) in the new variables is

(4) Hr2 =
1

2

(
u2 + v2

)
+ V (θ).

We note that the domain of definition of the differential system (3) are the points
(r, θ, u, v) of (0,∞)×S1×R2. Clearly we can extend this domain of definition to r = 0,
and thus we can study the solutions near the collision of the two bodies. So from now
on the domain of definition of the differential system (3) are the points (r, θ, u, v) of
[0,∞)× S1 × R2. We remark that McGehee [12] introduced these variables in order
to study the collision manifold r = 0.

From (4) the points of the zero energy level, H = 0, satisfy

u2 + v2 + 2V (θ) = 0.

For each θ ∈ S1 we have a circle S1 for (u, v), and since r ∈ [0,∞) we conclude that
H = 0 is diffeomorphic to [0,∞)×S1×S1 in the coordinates (r, θ, u, v). Consequently
the zero energy level in the variables (x, y, px, py) is diffeomorphic to (0,∞)×S1×S1.
So statement (a) of Theorem 1 is proved.

The equations of motion (3) on the zero energy level H = 0 reduce to

r′ = rv,

θ′ = u,

u′ = ε
4 sin(2θ)

(2 + ε(1 + cos(2θ)))2
,

v′ = 0,

Now these equations taking as independent variable the angular variable θ become

dr

dθ
=

rv

u
,

du

dθ
= ε

4 sin(2θ)

u(2 + ε(1 + cos(2θ)))2
,

dv

dθ
= 0.

(5)

We shall compute the solutions (r(θ), u(θ), v(θ)) of system (5).

It follows from dv/dθ = 0 that

v(θ) = v0 with v0 ∈ R.
Moreover the solution of

du

dθ
=

4ε sin(2θ)

u(2 + ε(1 + cos(2θ)))2
with u(0) = u0,
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is given by

u(θ) =
√
2

√
2

2 + ε(1 + cos(2θ))
+

u2
0(1 + ε)− 2

2(1 + ε)
.

Clearly u(θ) is well-defined and π-periodic in the variable θ.

Finally the solution of

dr

dθ
=

r(θ)v(θ)

u(θ)
with r(0) = r0.

is given by

r(θ) = r0 exp
( v0

√
2
√

u2
0(1 + ε)2 cos2 θ + (u2

0 + 2ε+ u2
0ε) sin

2 θ√
u2
0(1 + ε)

√
2u2

0 + ε(2 + 3u2
0 + u2

0ε) + ε(−2 + u2
0 + u2

0ε) cos(2θ)
P (u0, θ)

)
,

where
P (u0, θ) = −i

(
F (iϕ1, k1) + εΠ(1 + ε, iϕ1, k1)

)
,

being

F (ϕ,m) =

∫ ϕ

0

(1−m sin2 θ)−1/2 dθ =

∫ sin θ

0

[
(1− t2)(1−mt2)

]−1/2
dt,

the incomplete elliptic integral of the first kind and

Φ(n, ϕ,m) =

∫ ϕ

0

(1− n sin2 θ)−1(1−m sin2 θ)−1/2 dθ

=

∫ sinϕ

0

(1− nt2)−1
[
(1− t2)(1−mt2)

]−1/2
dt,

the incomplete elliptic integral of the third kind. Here

ϕ1 = arcsinh
(√ 1

1 + ε
tan θ

)
, k1 =

2ε+ u2
0(1 + ε)

u2
0(1 + ε)

, n = 1 + ε.

Note that using the equality iarcsinh (x) = arcsin(ix) we get

−iF (iϕ1, k1) = −i

∫ i 1√
1+ε

tan θ

0

[
(1− t2)(1− k1t

2))
]−1/2

dt

=
1√
1 + ε

tan θ

∫ 1

0

[(
1 + s2

tan2 θ

1 + ε

)(
1 + k1s

2 tan
2 θ

1 + ε

)]−1/2

ds,

doing the change t → s given by

(6) t =
i s√
1 + ε

tan θ.

Now define

P1(ε, θ, s) = (1 + ε) cos2 θ + s2 sin2 θ,

P2(ε, θ, s) = (1 + ε) cos2 θ + k1s
2 sin2 θ

= (1 + ε) cos2 θ +
2ε+ u2

0(1 + ε)

u2
0(1 + ε)

s2 sin2 θ.

(7)
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Therefore we obtain

−iF (iϕ1, k1) =

√
1 + ε

2
sin(2θ)

∫ 1

0

[
P1(ε, θ, s)P2(ε, θ, s)

]−1/2
ds.

Note that this function is real, well-defined and π-periodic in the variable θ. Pro-
ceeding analogously we get

− iΠ(1 + ε, iϕ1, k1) = −i

∫ i 1√
1+ε

tan θ

0

(1− (1 + ε)t2))−1
[
(1− t2)(1− k1t

2))
]−1/2

dt

=
tan θ√
1 + ε

∫ 1

0

(
1 + s2 tan2 θ

)−1[(
1 + s2

tan2 θ

1 + ε

)(
1 + k1s

2 tan
2 θ

1 + ε

)]−1/2

ds,

again with the change of variables (6). Using the notation of (7) and defining

P3(ε, θ, s) = cos2 θ + s2 sin2 θ,

we get

−iΠ(1+ε, iϕ1, k1) =

√
1 + ε sin(2θ) cos2 θ

2

∫ 1

0

P3(ε, θ, s)
−1
[
P1(ε, θ, s)P2(ε, θ, s)

]−1/2
ds.

Note that this function is real, well-defined and π-periodic in the variable θ. Then we
have that the solution (r(θ), u(θ), v(θ)) is π-periodic. Hence all solutions in the zero
energy level H = 0 are π-periodic in the variable θ in the points (r, θ, u, v) ∈ [0,∞)×
S1 × R2, and periodic in the time t in the points (x, y, px, py) ∈ (R2 \ {(0, 0)})× R2.
This completes the proof of statement (b) of Theorem 1.
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