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Abstract. We consider the Liénard analytic differential systems ẋ = y, ẏ =

−g(x) − f(x)y, where f, g : R → R are analytic functions and the origin is an

isolated singular point. Then for such systems we characterize the existence of
local analytic first integrals in a neighborhood of the origin and the existence

of global analytic first integrals.

1. Introduction and statement of the main results. One of the more classical
problems in the qualitative theory of planar analytic differential systems in R2 is to
characterize the existence of analytic first integrals in a neighborhood of an isolated
singular point, and in particular the existence of a global analytic first integral when
the differential system is defined in the whole R2.

One of the best and oldest results in this direction is the analytic nondegerate
center theorem. In order to be more precise we recall some definitions. A singular
point is a nondegenerate center if it is a center with eigenvalues purely imaginary.
If a real planar analytic system has a nondegenerate center at the origin, then after
a linear change of variables and a rescaling of the time variable, it can be written
in the form:

ẋ = y +X(x, y),
ẏ = −x+ Y (x, y),

(1)

where X(x, y) and Y (x, y) are real analytic functions without constant and linear
terms defined in a neighborhood of the origin.

Let U be an open subset of R2, H : U → R be a nonconstant analytic function
and X be an analytic vector field defined on U . Then H is an analytic first integral
of X if H is constant on the solutions of X ; i.e. if XH = 0.

The next result is due to Poincaré [9] and Liapunov [6], see also Moussu [8].
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