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LIMIT CYCLES FOR A VARIANT OF A
GENERALIZED RICCATI EQUATION

JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. In this paper we provide a lower bound for the max-
imum number of limit cycles surrounding the origin of systems
(ẋ, ẏ = ẍ) given by a variant of the generalized Riccati equation

ẍ+ εx2n+1ẋ+ bx4n+3 = 0,

where b > 0, b ∈ R, n is a non–negative integer and ε is a small
parameter. The tool for proving this result uses Abelian integrals.

1. Introduction and statement of the main results

Some variants of the generalized Riccati equation

(1) ẍ+ αx2n+1ẋ+ x4n+3 = 0,

have been studied for several authors, see for instance [8], [5], and the
references quoted there. In the first paper the authors studied mainly
the following variant of equation (1)

ẍ+ (2n+ 3)x2n+1ẋ+ x4n+3 + ω2x = 0,

showing numerically that such differential equation exhibits isochronous
oscillations. In the second paper the authors study the variant of equa-
tion (1)

ẍ+ (2n+ 3)x2n+1ẋ+ x4n+3 + ω2x2n+1 = 0,

and they find the analytical expression of some particular solutions.

In the present paper we will study the following variant of the gen-
eralized Riccati equation (1)

(2) ẍ+ εx2n+1ẋ+ bx4n+3 + εa(x+ yq(x)) = 0,

where a, b ∈ R with b ̸= 0, n is a non–negative integer, ε is a small
parameter and q(x) is a polynomial of degree m.
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Equation (1) can be written as

ẋ = y,

ẏ = −bx4n+3 − εa(x+ yq(x))− εx2n+1y,
(3)

or equivalently in the form

ẋ = −∂H

∂y
+ εP (x, y),

ẏ =
∂H

∂x
+ εQ(x, y),

(4)

where

(5) H(x, y) =
y2

2
+

bx4n+4

4n+ 4
,

and
P (x, y) = 0, Q(x, y) = −a(x+ yq(x))− x2n+1y.

Observe that for b > 0 there is a family of ovals γh ⊂ H−1(h) contin-
uously depending on a parameter h > 0 and varying in the compact
components of H−1(h). Moreover all the ovals γh fill up the plane R2

when h varies on all positive real numbers. These ovals are periodic
orbits of the Hamiltonian system (4) with ε = 0.

The objective of this paper is to find the maximum number of values
of h (that we denote by h∗) for which it bifurcate from γh∗ a limit cycle
of the differential system (4) for |ε| > 0 sufficiently small.

Theorem 1. For |ε| > 0 sufficiently small there are systems (3) with
b > 0 having m limit cycles Γh∗

m
that when ε → 0 tend to periodic orbits

γh∗
m

of the Hamiltonian system (3) with b > 0 and ε = 0. Moreover
there are polynomials q(x) for which the differential system (3) with
b > 0 and |ε| > 0 sufficiently small has exactly m limit cycles.

The proof of Theorem 1 is given in section 2.

Note that Theorem 1 is closely related to the weakened 16th Hilbert
problem proposed by Arnold in [1, 2] which in its turn is closely related
to determining an upper bound for the number of limit cycles of a
perturbed Hamiltonian system of the form in (4). For other papers on
limit cycles see for instance [6, 7] and the references quoted there.

2. Proof of Theorem 1

To prove Theorem 1 we will use use the following Theorem whose
proof can be obtained, for instance, in [4].
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Theorem 2. Assume that there is a family of ovals γh ⊂ H−1(h),
continuously depending on h ∈ (a, b). Define the Abelian integral as

(6) I(h) =

∫
γh

P (x, y) dy −Q(x, y) dx.

If there exists an h∗ ∈ (a, b) such that I(h∗) = 0 and I ′(h∗) ̸= 0 then
for ε sufficiently small, the Hamiltonian system (4) has at most one
limit cycle Γh∗ which tends to γh∗ as ε → 0.

We first write the polynomial q(x) =
∑n

i=0 qjx
j. Note that the un-

perturbed system (2) (with ε = 0) is Hamiltonian with the Hamiltonian
H given in (5). The periodic orbits of the unperturbed system (2) with
h > 0 are the ovals γh. Now we will use Theorem 2 and so we shall
compute the Abelian integral I(h) given in (6). We have

I(h) =

∫ ∫
H(x,y)≤h

∂

∂y
(x2n+1y + a(x+ yq(x))) dx dy

=

∫ ∫
H(x,y)≤h

(x2n+1 + aq(x)) dx dy

=

∫ ∫
H(x,y)≤h

x2n+1 dx dy + a

m∑
i=0

qi

∫ ∫
H(x,y)≤h

xi dx dy

= 2

∫ x

−x

x2n+1

(
2h− b

2(n+ 1)
x4(n+1)

)1/2

dx

+ 2a
m∑
i=0

qi

∫ x

−x

xi

(
2h− b

2(n+ 1)
x4(n+1)

)1/2

dx,

where

x =
(4h(n+ 1)

b

)1/(4(n+1))

.

Note that for any integer j we have∫ x

−x

xj

(
2h− b

2(n+ 1)
x4(n+1)

)1/2

dx =

2
j−n
2n+2 (1 + (−1)j) b−

j+1
4n+4 (n+ 1)

j+1
4n+4

√
π Γ

(
j+4n+5
4n+4

)
(j + 1)Γ

(
j+6n+7
4n+4

) h
j+4n+5
4n+4 ,

being Γ(·) the Gamma function. If h = h1/(4(n+1)) and

Bj,n =
2

j−n
2n+2 (1 + (−1)j) b−

j+1
4n+4 (n+ 1)

j+1
4n+4

√
π Γ

(
j+4n+5
4n+4

)
(j + 1)Γ

(
j+6n+7
4n+4

)
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Then

J(h) = I(h) = 2h
4n+5

(
B2n+1,nh

2n+1
+ a

m∑
i=0

qiBi,nh
i
)
.

Note that J(h) has at most m simple positive zeros if m ≥ 2n+1, and
by generalized Descartes theorem (see the Appendix) J(h) has at most
m simple positive zeros if m < 2n+ 1.

Since the coefficients qi are arbitrary, we can choose a perturbation
q(x) in such a way that J(h) has exactly m simple positive zeros, and
consequently there are differential systems (3) withm limit cycles. This
concludes the proof of the theorem.

3. Appendix

We recall the Descartes Theorem about the number of zeros of a real
polynomial (for a proof see for instance [3]).

Descartes Theorem Consider the real polynomial p(x) = ai1x
i1 +

ai2x
i2 + · · · + airx

ir with 0 ≤ i1 < i2 < · · · < ir and aij ̸= 0 real
constants for j ∈ {1, 2, · · · , r}. When aijaij+1

< 0, we say that aij and
aij+1

have a variation of sign. If the number of variations of signs is
r−1, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r − 1 positive real roots.
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