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LIMIT CYCLES FOR A VARIANT OF A
GENERALIZED RICCATI EQUATION

JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. In this paper we provide a lower bound for the max-
imum number of limit cycles surrounding the origin of systems
(&,y = &) given by a variant of the generalized Riccati equation

&+ ex® i 4 ba'" 3 = 0,

where b > 0, b € R, n is a non—negative integer and ¢ is a small
parameter. The tool for proving this result uses Abelian integrals.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Some variants of the generalized Riccati equation
(1) i+ ar? i 2t =0,

have been studied for several authors, see for instance [8], [5], and the
references quoted there. In the first paper the authors studied mainly
the following variant of equation (1)

i+ (2n 4 3)2*" g 4+ 21 4wl =0,

showing numerically that such differential equation exhibits isochronous
oscillations. In the second paper the authors study the variant of equa-
tion (1)

&+ (2n + 3)a® g 4 2t 4 W2t = 0,
and they find the analytical expression of some particular solutions.

In the present paper we will study the following variant of the gen-
eralized Riccati equation (1)

(2) i+ ex® g 4 ba'™ 3 + ca(x + yq(x)) = 0,

where a,b € R with b # 0, n is a non—negative integer, € is a small
parameter and ¢(z) is a polynomial of degree m.
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Equation (1) can be written as

T =Y,
3
( ) y — —bl’4n+3 . 5a(m + yq(m)) o €x2n+1y7
or equivalently in the form

T = _8_]—[ +eP(z,y),
(4) o

. OH

i= Q)
where

y2 b$4n+4

(5) H(x,y)—?+4n+4,
and

P(z,y) =0, Q(z,y) = —alz + yq(x)) — 2*"*y.
Observe that for b > 0 there is a family of ovals v, C H~(h) contin-
uously depending on a parameter h > 0 and varying in the compact
components of H~'(h). Moreover all the ovals ~;, fill up the plane R?
when h varies on all positive real numbers. These ovals are periodic
orbits of the Hamiltonian system (4) with € = 0.

The objective of this paper is to find the maximum number of values
of h (that we denote by h*) for which it bifurcate from 7« a limit cycle
of the differential system (4) for |e| > 0 sufficiently small.

Theorem 1. For |e| > 0 sufficiently small there are systems (3) with
b > 0 having m limit cycles I'yx  that when € — 0 tend to periodic orbits
Yhz  of the Hamiltonian system (3) with b > 0 and € = 0. Moreover
there are polynomials q(x) for which the differential system (3) with
b >0 and |e| > 0 sufficiently small has exactly m limit cycles.

The proof of Theorem 1 is given in section 2.

Note that Theorem 1 is closely related to the weakened 16th Hilbert
problem proposed by Arnold in [1, 2] which in its turn is closely related
to determining an upper bound for the number of limit cycles of a
perturbed Hamiltonian system of the form in (4). For other papers on
limit cycles see for instance [6, 7] and the references quoted there.

2. PROOF OF THEOREM 1

To prove Theorem 1 we will use use the following Theorem whose
proof can be obtained, for instance, in [4].
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Theorem 2. Assume that there is a family of ovals v, C H~'(h),
continuously depending on h € (a,b). Define the Abelian integral as

(6) I(h) = / Pla,y) dy — Qa,y) de

Th

If there exists an h* € (a,b) such that I(h*) = 0 and I'(h*) # 0 then
for € sufficiently small, the Hamiltonian system (4) has at most one
limit cycle Uy« which tends to yp+ as € — 0.

We first write the polynomial ¢(z) = > g;2?. Note that the un-
perturbed system (2) (with ¢ = 0) is Hamiltonian with the Hamiltonian
H given in (5). The periodic orbits of the unperturbed system (2) with
h > 0 are the ovals v,. Now we will use Theorem 2 and so we shall
compute the Abelian integral /(h) given in (6). We have

0
- / /H Ayl () dedy
T,Y)>

—[[ @ ke dedy
H(z,y)<h

:// 2”“dxdy+a2ql// a:'da:dy
H(zy)< H(z,y)<

1/
_ 2 2n+1 <2h x4(n+1)> dr

m b 1/2
2 ; 2h — ——— 2 ) g
. z [ (2 gy ) e

_ <4h(n + 1)>1/(4(n+1))

T=—— :
b

Note that for any integer j we have

T b 1/2
/ 27 2h — — At dr =
z 2(n+1)

2353 (14 (—1)7) b ined (n+ 1)inea o/ T (E048)
h ant4 ,

4n+4
(j + DI (2T

being I'(-) the Gamma function. If b = h/*+1D) and

s 93w72 (1 4 (—1)7) b3t (n + 1)fra /7 T (Exints)

" G0 (55

where
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Then

J(E) = [(h) = 2E4n+5 (Bgn+17n52n+1 +a Z qZBlynE’L) .
=0
Note that .J(h) has at most m simple positive zeros if m > 2n+1, and

by generalized Descartes theorem (see the Appendix) J(h) has at most
m simple positive zeros if m < 2n + 1.

Since the coefficients g; are arbitrary, we can choose a perturbation
q(z) in such a way that J(h) has exactly m simple positive zeros, and
consequently there are differential systems (3) with m limit cycles. This

concludes the proof of the theorem.

3. APPENDIX

We recall the Descartes Theorem about the number of zeros of a real
polynomial (for a proof see for instance [3]).

Descartes Theorem Consider the real polynomial p(z) = a;x™ +
a2 + o4 ag o with 0 < iy < iy < -+ < 4, and a;, # 0 real
constants for j € {1,2,--- ,r}. When a;,a;;,, <0, we say that a;; and
ai;,, have a variation of sign. If the number of variations of signs is
r—1, then p(x) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(x) in such a way that p(x) has
exactly r — 1 positive real roots.
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