COMPUTING POLYNOMIAL SOLUTIONS OF EQUIVARIANT POLYNOMIAL ABEL DIFFERENTIAL EQUATIONS

JAUME LLIBRE 2 AND CLÀUDIA VALLS 3

ABSTRACT. Let a(x) non-constant and $b_j(x)$ for j=0,1,2,3 be real or complex polynomials in the variable x. Then the real or complex equivariant polynomial Abel differential equations $a(x)\dot{y}=b_1(x)y+b_3(x)y^3$ with $b_3(x)\neq 0$, and the real or complex polynomial equivariant polynomial Abel differential equations of second kind $a(x)y\dot{y}=b_0(x)+b_2(x)y^2$ with $b_2(x)\neq 0$, have at most 7 polynomial solutions. Moreover there are equations of these type having these maximum number of polynomial solutions.

1. Introduction and statement of the main results

Abel differential equations of first kind

(1)
$$a(x)\dot{y} = b_0(x) + b_1(x)y + b_2(x)y^2 + b_3(x)y^3$$

with $b_3(x) \neq 0$ appear in many text-books of ordinary differential equations as one of first non-trivial examples of nonlinear differential equations, see for instance [10]. Here the dot denotes the derivative with respect to the independent variable x. If $b_3(x) = b_0(x) = 0$ or $b_2(x) = b_0(x) = 0$ the Abel differential equation reduces to a Bernoulli differential equation, while if $b_3(x) = 0$ the Abel differential equation reduces to a Riccati differential equation.

The Abel differential equations (1) have been studied intensively, either calculating their solutions (see for instance [7, 11, 12, 13]), or classifying their centers (see [2, 3, 4]), and recently in [6, 8, 9] the authors studied the polynomial solutions of the differential equation $y' = \sum_{i=0}^{n} a_i(x)y^i$.

The analysis of particular solutions (as polynomial or rational solutions) of the differential equations is important for understanding the set of solutions of a differential equation. In 1936 Rainville [14] characterized the Riccati differential equations $\dot{y} = b_0(x) + b_1(x)y + y^2$, with $b_0(x)$ and $b_1(x)$ polynomials in the variable x, having polynomial solutions.

²⁰¹⁰ Mathematics Subject Classification. Primary 34A05. Secondary 34C05, 37C10. Key words and phrases. polynomial Abel equations, equivariant polynomial equation, polynomial solutions.