COMPUTING POLYNOMIAL SOLUTIONS OF EQUIVARIANT POLYNOMIAL ABEL DIFFERENTIAL EQUATIONS

JAUME LLIBRE ${ }^{2}$ AND CLÀUDIA VALLS ${ }^{3}$

Abstract

Let $a(x)$ non-constant and $b_{j}(x)$ for $j=0,1,2,3$ be real or complex polynomials in the variable x. Then the real or complex equivariant polynomial Abel differential equations $a(x) \dot{y}=b_{1}(x) y+$ $b_{3}(x) y^{3}$ with $b_{3}(x) \neq 0$, and the real or complex polynomial equivariant polynomial Abel differential equations of second kind $a(x) y \dot{y}=b_{0}(x)+$ $b_{2}(x) y^{2}$ with $b_{2}(x) \neq 0$, have at most 7 polynomial solutions. Moreover there are equations of these type having these maximum number of polynomial solutions.

1. Introduction and statement of the main results

Abel differential equations of first kind

$$
\begin{equation*}
a(x) \dot{y}=b_{0}(x)+b_{1}(x) y+b_{2}(x) y^{2}+b_{3}(x) y^{3} \tag{1}
\end{equation*}
$$

with $b_{3}(x) \neq 0$ appear in many text-books of ordinary differential equations as one of first non-trivial examples of nonlinear differential equations, see for instance [10]. Here the dot denotes the derivative with respect to the independent variable x. If $b_{3}(x)=b_{0}(x)=0$ or $b_{2}(x)=b_{0}(x)=0$ the Abel differential equation reduces to a Bernoulli differential equation, while if $b_{3}(x)=0$ the Abel differential equation reduces to a Riccati differential equation.

The Abel differential equations (1) have been studied intensively, either calculating their solutions (see for instance [7, 11, 12, 13]), or classifying their centers (see $[2,3,4]$), and recently in $[6,8,9]$ the authors studied the polynomial solutions of the differential equation $y^{\prime}=\sum_{i=0}^{n} a_{i}(x) y^{i}$.

The analysis of particular solutions (as polynomial or rational solutions) of the differential equations is important for understanding the set of solutions of a differential equation. In 1936 Rainville [14] characterized the Riccati differential equations $\dot{y}=b_{0}(x)+b_{1}(x) y+y^{2}$, with $b_{0}(x)$ and $b_{1}(x)$ polynomials in the variable x, having polynomial solutions.

[^0]
[^0]: 2010 Mathematics Subject Classification. Primary 34A05. Secondary 34C05, 37C10.
 Key words and phrases. polynomial Abel equations, equivariant polynomial equation, polynomial solutions.

