COMPUTING POLYNOMIAL SOLUTIONS OF EQUIVARIANT POLYNOMIAL ABEL DIFFERENTIAL EQUATIONS

JAUME LLIBRE² AND CLÀUDIA VALLS³

ABSTRACT. Let a(x) non-constant and $b_j(x)$ for j = 0, 1, 2, 3 be real or complex polynomials in the variable x. Then the real or complex equivariant polynomial Abel differential equations $a(x)\dot{y} = b_1(x)y + b_3(x)y^3$ with $b_3(x) \neq 0$, and the real or complex polynomial equivariant polynomial Abel differential equations of second kind $a(x)y\dot{y} = b_0(x) + b_2(x)y^2$ with $b_2(x) \neq 0$, have at most 7 polynomial solutions. Moreover there are equations of these type having these maximum number of polynomial solutions.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Abel differential equations of first kind

(1)
$$a(x)\dot{y} = b_0(x) + b_1(x)y + b_2(x)y^2 + b_3(x)y^3$$

with $b_3(x) \neq 0$ appear in many text-books of ordinary differential equations as one of first non-trivial examples of nonlinear differential equations, see for instance [10]. Here the dot denotes the derivative with respect to the independent variable x. If $b_3(x) = b_0(x) = 0$ or $b_2(x) = b_0(x) = 0$ the Abel differential equation reduces to a Bernoulli differential equation, while if $b_3(x) = 0$ the Abel differential equation reduces to a Riccati differential equation.

The Abel differential equations (1) have been studied intensively, either calculating their solutions (see for instance [7, 11, 12, 13]), or classifying their centers (see [2, 3, 4]), and recently in [6, 8, 9] the authors studied the polynomial solutions of the differential equation $y' = \sum_{i=0}^{n} a_i(x)y^i$.

The analysis of particular solutions (as polynomial or rational solutions) of the differential equations is important for understanding the set of solutions of a differential equation. In 1936 Rainville [14] characterized the Riccati differential equations $\dot{y} = b_0(x) + b_1(x)y + y^2$, with $b_0(x)$ and $b_1(x)$ polynomials in the variable x, having polynomial solutions.

²⁰¹⁰ Mathematics Subject Classification. Primary 34A05. Secondary 34C05, 37C10. Key words and phrases. polynomial Abel equations, equivariant polynomial equation, polynomial solutions.

J. LLIBRE AND C. VALLS

Campbell and Golomb [5] in 1954 provides an algorithm for determining the polynomial solutions of the Riccati differential equation $a(x)y' = b_0(x) + b_1(x)y + b_2(x)y^2$, where a, b_0, b_1, b_2 are polynomials in the variable x. Behloul and Cheng [1] in 2006 gave a different algorithm for finding the rational solutions of the differential equations $a(x)y' = \sum_{i=0}^{n} b_i(x)y^i$, where a, b_i are polynomials in the variable x.

Here we consider the Abel differential equations (1) where $a(x) \in \mathbb{F}[x] \setminus \{0\}, b_i(x) \in \mathbb{F}[x], i = 0, 1, 2, 3, b_3(x) \neq 0$, where $\mathbb{F} = \mathbb{R}, \mathbb{C}$, and $\mathbb{F}[x]$ is the ring of polynomials in the variable x with coefficients in \mathbb{F} . We also assume that a(x) is not constant. The case a(x) constant has been studied in [9]. We say that the Abel differential equation (1) has degree η .

Equation (1) is *reversible* with respect to the change of variables $(x, y) \rightarrow (x, -y)$ if the following equation

$$-a(x)\dot{y} = -(b_0(x) - b_1(x)y + b_2(x)y^2 - b_3(x)y^3)$$

coincides with equation (1). In particular this implies $b_1(x) = b_3(x) = 0$, and since $b_3(x) = 0$ we do not consider these reversible differential equations.

The Abel differential equation (1) is *equivariant* with respect to the change of variables $(x, y) \rightarrow (x, -y)$ if the following equation

$$-a(x)\dot{y} = b_0(x) - b_1(x)y + b_2(x)y^2 - b_3(x)y^3$$

coincides with equation (1). This implies $b_0(x) = b_2(x) = 0$. In this paper first we focus our study in these kind of *equivariant polynomial Abel* equations, i.e. in the equations

(2)
$$a(x)\dot{y} = b_1(x)y + b_3(x)y^3$$

Theorem 1. Real or complex equivariant polynomial Abel differential equations with $b_3(x) \neq 0$ and a(x) non-constant, have at most 7 polynomial solutions. Moreover there are equations of this type having these maximum number of polynomial solutions.

The proof of Theorem 1 is given in section 2.

Our second objective in this paper is on the Abel differential equations of second kind, i.e. on the equations of the form

(3)
$$a(x)y\dot{y} = b_0(x) + b_1(x)y + b_2(x)y^2,$$

where $a(x), b_i(x) \in \mathbb{F}[x]$ for i = 0, 1, 2, with a(x) and $b_2(x)$ non-zero. We also consider the ones that are equivariant with respect to the change $(x, y) \rightarrow (x, -y)$. Then we have that $b_1(x) = 0$ and so equation (3) becomes

(4)
$$a(x)y\dot{y} = b_0(x) + b_2(x)y^2.$$

We also assume that a(x) is not constant, because the case a(x) constant has been studied in [6]. We say that the *equivariant polynomial Abel* differential equation of second kind (4).

Theorem 2. Real or complex equivariant polynomial Abel differential equations of second kind with $b_2(x) \neq 0$ and a(x) non-constant, have at most 7 polynomial solutions. Moreover there are equations of this type having these maximum number of polynomial solutions.

The proof of Theorem 2 is given in section 3.

2. Proof of Theorem 1

First we recall that if $y(x) \neq 0$ is a solution of equation (2), then -y(x) is also a solution of equation (2) which is different from y(x).

Lemma 3. Let $y_0(x) \neq 0$, $y_1(x), y_2(x)$ be polynomial solutions of equation (2) such that $y_1(x) \neq 0$, $y_2(x) \neq 0$ and $y_2(x) \neq -y_1(x)$. Set $y_1(x) = g(x)\tilde{y}_1(x)$ and $y_2(x) = g(x)\tilde{y}_2(x)$ where $g = gcd(y_1, y_2)$. Then, except the solution y = 0, all the other polynomial solutions of equation (2) can be expressed as

(5)
$$y_0(x;c) = \pm \frac{\tilde{y}_1(x)\tilde{y}_2(x)g(x)}{\left(c\tilde{y}_1^2(x) + (1-c)\tilde{y}_2^2(x)\right)^{1/2}},$$

where c is a constant and $\left(c\tilde{y}_1^2(x) + (1-c)\tilde{y}_2^2(x)\right)^{1/2}$ is a polynomial.

Proof. Let y be a nonzero polynomial solution of equation (2). The functions $z_0 = 1/y_0^2$, $z_1 = 1/y_1^2$ and $z_2 = 1/y_2^2$ are solutions of a linear differential equation and satisfy

$$-a(x)\dot{z}_i = 2b_1(x)z_i + 2b_3(x), \quad i = 0, 1, 2.$$

Therefore we have

$$\frac{\dot{z}_0(x) - \dot{z}_1(x)}{z_0(x) - z_1(x)} = \frac{\dot{z}_2(x) - \dot{z}_1(x)}{z_2(x) - z_1(x)}.$$

Integrating this equality we obtain

$$z_0(x) = z_1(x) + c(z_2(x) - z_1(x))$$

with c an arbitrary constant. So the general solution of equation (2) is

$$y_0^2(x) = \frac{1}{z_0(x)} = \frac{1}{z_1(x) + c(z_2(x) - z_1(x))}$$

= $\frac{y_1^2(x)y_2^2(x)}{cy_1^2(x) + (1 - c)y_2^2(x)} = \frac{\tilde{y}_1^2(x)\tilde{y}_2^2(x)g(x)^2}{c\tilde{y}_1^2(x) + (1 - c)\tilde{y}_2^2(x)},$

with c an arbitrary constant.

In view of Lemma 3, if $y_1(x), y_2(x)$ are polynomial solutions of equation (2) such that $y_1(x) \neq 0, y_2(x) \neq 0, y_2(x) \neq -y_1(x)$, then any other polynomial solution different from them is of the form given in (5) for some appropriate constant c such that $c \notin \{0, 1\}$. In particular, $c\tilde{y}_1^2(x) + (1-c)\tilde{y}_2^2(x)$ is a square of a polynomial P and P divides g. We claim that this c is unique.

We write the condition that $c\tilde{y}_1^2(x) + (1-c)\tilde{y}_2^2(x)$ is a square of a polynomial in the form

$$\tilde{y}_1^2 + d\tilde{y}_2^2 = Z_1^2$$

where d = (1 - c)/c (we recall that $c \notin \{0, 1\}$). We claim that there is a unique d for which this is possible.

For proving the claim we proceed by contradiction. Assume that there exists d_1, d_2 for which

(6)
$$\tilde{y}_1^2 + d_1 \tilde{y}_2^2 = Z_1^2 \text{ and } \tilde{y}_1^2 + d_2 \tilde{y}_2^2 = Z_2^2,$$

for some polynomials Z_1, Z_2 and $d_1, d_2 \neq 1$ with $d_1 \neq d_2$. First we state and prove an auxiliary result.

Lemma 4. The polynomial solutions of $X^2 + Y^2 = Z^2$ with pairwise coprime polynomials X, Y, Z are of the form

$$\pm X = 2ab, \quad \pm Y = a^2 - b^2, \quad \pm Z = a^2 + b^2$$

(or with X, Y interchanged) where a and b are co-prime polynomials.

Proof. It is sufficient to consider the plus case because if X, Y, Z is a solution so are $\pm X, \pm Y, \pm Z$. We can assume that are pairwise co-prime as, if a polynomial divides two of them it must divide the third and can be canceled from the identity. Let X = 2u, Y + Z = 2v and Y - Z = 2w with u, v, wpolynomials and where v and w are coprime. It follows from the relation

$$X^{2} = Z^{2} - Y^{2} = (Z + Y)(Z - Y)$$

that

$$u^2 = vw$$

So v, w must be squares as they are co-prime. Let $v = a^2$ and $w = b^2$ where a and b are coprime. Hence

$$Z = a^2 + b^2$$
, $Y = a^2 - b^2$ $X = 2ab$

and the lemma is proved.

In the first identity in (6) using Lemma 4 we can write

$$\tilde{y}_1 = 2ab, \quad \sqrt{d_1}\tilde{y}_2 = a^2 - b^2,$$

where a and b are coprime. Then we can write the second identity in (6) as

$$\begin{split} \tilde{y}_1^2 + d_2 \tilde{y}_2^2 &= \tilde{y}_1^2 + \left(\frac{\sqrt{d_2}}{\sqrt{d_1}}(\sqrt{d_1}\tilde{y}_2)\right)^2 = 4a^2b^2 + \frac{d_2}{d_1}(a^2 - b^2)^2 \\ &= \left(\frac{d_2}{d_1} - 1\right)(a^2 - b^2) + (a^2 + b^2) \\ &= \left(\sqrt{(\frac{d_2}{d_1} - 1)}(a^2 - b^2)\right)^2 + (a^2 + b^2)^2. \end{split}$$

4

Since $d_2 \neq d_1$ we have that setting $\gamma = \sqrt{\left(\frac{d_2}{d_1} - 1\right)}$ then $\gamma \neq 0$. Let $a_1 = \sqrt{\gamma}a, \quad b_1 = \sqrt{\gamma}b.$

Then

 $\tilde{y}_1^2 + d_2 \tilde{y}_2^2 = (\gamma (a^2 - b^2))^2 + (a^2 + b^2)^2 = (a_1^2 - b_1^2)^2 + \gamma^{-2}(a_1^2 + b_1^2)^2 = Y_1^2 + X_1^2.$ In view of Lemma 4 since $Y_1 = a_1^2 - b_1^2$ we must have that $X_1 = 2a_1b_1$. Therefore

$$X_1 = \gamma^{-1}(a_1^2 + b_1^2) = 2a_1b_1$$
, that is $a_1^2 + b_1^2 - 2\gamma a_1b_1 = 0$.

This yields

$$a_1 = \gamma b_1 \pm b_1 \sqrt{\gamma^2 - 1} = b_1 (\gamma \pm \sqrt{\gamma^2 - 1}).$$

Since $\gamma \pm \sqrt{\gamma^2 - 1} \neq 0$ and a and b are coprime (and so are a_1 and b_1) we get a contradiction. This proves the claim.

In short, there is at most one constant $c \notin \{0, 1\}$ such that $c\tilde{y}_1^2 + (1-c)\tilde{y}_2^2$ is a square of a polynomial meaning that equation (2) has at most seven different polynomial solutions $0, \pm y_1, \pm y_2$ and y_0 as in (5).

Example 1. We consider the equivariant polynomial Abel differential equation (2) with

$$a(x) = -2x + 48x^3 - 768x^7 + 512x^9,$$

$$b_1(x) = 2(-1 + 96x^4 - 1536x^6 + 768x^8),$$

$$b_3(x) = 64.$$

This equation has the following 7 polynomial solutions

$$y_{1}(x) = 0,$$

$$y_{2,3}(x) = \pm \left(2\sqrt{2}x^{3} + \frac{x}{\sqrt{2}}\right),$$

$$y_{4,5}(x) = \pm \left(x - 4x^{3}\right),$$

$$y_{6,7}(x) = \pm \left(\frac{1}{4\sqrt{2}} - 2\sqrt{2}x^{4}\right).$$

3. Proof of Theorem 2

First we recall that if $y(x) \neq 0$ is a solution of equation (4), then -y(x) is also a solution of equation (4) which is different from y(x).

Lemma 5. Let $y_0(x) \neq 0$, $y_1(x), y_2(x)$ be polynomial solutions of equation (4) such that $y_1(x) \neq 0$, $y_2(x) \neq 0$ and $y_2(x) \neq -y_1(x)$. Set $y_1(x) = g(x)\tilde{y}_1(x)$ and $y_2(x) = g(x)\tilde{y}_2(x)$ where $g = gcd(y_1, y_2)$. Then, except the solution y = 0, all the other polynomial solutions of equation (4) can be expressed as

(7)
$$y_0(x;c) = \pm g(x) \left(c \tilde{y}_1^2(x) + (1-c) \tilde{y}_2^2(x) \right)^{1/2}$$

where c is a constant.

Proof. Let y be a nonzero polynomial solution of equation (2). The functions $z_0 = y_0^2$, $z_1 = y_1^2$ and $z_2 = y_2^2$ are solutions of a linear differential equation and satisfy

$$a(x)\dot{z}_i = 2b_0(x) + 2b_2(x)z_i, \quad i = 0, 1, 2.$$

Therefore we have

$$\frac{\dot{z}_0(x) - \dot{z}_1(x)}{z_0(x) - z_1(x)} = \frac{\dot{z}_2(x) - \dot{z}_1(x)}{z_2(x) - z_1(x)}.$$

Integrating this equality we obtain

$$z_0(x) = z_1(x) + c(z_2(x) - z_1(x)),$$

with c an arbitrary constant. So the general solution of equation (2) is

$$y_0^2(x) = z_0(x) = z_1(x) + c(z_2(x) - z_1(x))$$

= $(1 - c)y_1^2(x) + cy_2^2(x) = g^2(x)((1 - c)\tilde{y}_1^2 + c\tilde{y}_2^2),$

with c an arbitrary constant.

In view of Lemma 3, if $y_1(x), y_2(x)$ are polynomial solutions of equation (4) such that $y_1(x) \neq 0, y_2(x) \neq 0$ and $y_2(x) \neq -y_1(x)$ then any other polynomial solution is of the form as in (7) for some appropriate constant c. In particular, $c\tilde{y}_1^2(x) + (1-c)\tilde{y}_2^2(x)$ is a square of a polynomial P. Proceeding exactly as in the proof of Theorem 1 we conclude that equation (4) has at most seven different polynomial solutions $0, \pm y_1, \pm y_2$ and y_0 as in (7).

Example 2. We consider the equivariant polynomial Abel differential equation of second kind (4) with

$$a(x) = 2x^{4} - 3x^{2} + \frac{1}{8}$$

$$b_{0}(x) = \frac{x}{2} - 8x^{5},$$

$$b_{2}(x) = 4x^{3} - 3x.$$

This equation has the following 7 polynomial solutions

$$y_1(x) = 0,$$

$$y_{2,3}(x) = \pm \left(2x^2 - \frac{1}{2}\right),$$

$$y_{4,5}(x) = \pm \left(\sqrt{2}x^2 + \frac{1}{2\sqrt{2}}\right),$$

$$y_{6,7}(x) = \pm 2x.$$

ACKNOWLEDGEMENTS

The first author is partially supported by a FEDER-MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and an AGAUR grant number 2014SGR-568. The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013.

References

- [1] D. BEHLOUL, S.S. CHENG, Computation of all polynomial solutions of a class of nonlinear differential equations, Computing 77 (2006), 163–177.
- [2] M. BRISKIN, J.P. FRANÇOISE, Y. YOMDIN, Center conditions, compositions of polynomials and moments on algebraic curves, Ergodic Theory & Dynam. Systems 19 (1999), 1201–1220.
- [3] M. BRISKIN, J.P. FRANÇOISE, Y. YOMDIN, Center conditions. II. Parametric and model center problems, Israel J. Math. 118 (2000), 61–82.
- [4] M. BRISKIN, J.P. FRANÇOISE, Y. YOMDIN, Center conditions. III. Parametric and model center problems, Israel J. Math. 118 (2000), 83–108.
- [5] J.G. CAMPBELL, M. GOLOMB, On the polynomial solutions of a Riccati equation, The Amer. Math. Monthly 61 (1954), 402–404.
- [6] A. FERRAGUT AND J. LLIBRE, On the polynomial solutions of the polynomial differential equations $y\dot{y} = a_0(x) + a_1(x)y^2 + \ldots + a_n(x)y^n$, Preprint, 2016.
- [7] A. GASULL, J. LLIBRE, Limit cycles for a class of Abel equations, SIAM J. Math. Anal. 21 (1990), 1235–1244.
- [8] A. GASULL, J. TORREGROSA AND X. ZHANG The number of polynomial solutions of polynomial Riccati equations, J. Differential Equations 261 (2016), 5071–5093.
- [9] J. GINÉ, M. GRAU AND J. LLIBRE, On the polynomial limit cycles of polynomial differential equations, Israel J. Math. 181 (2011), 461–475.
- [10] E. KAMKE, Differentialgleichungen: Lösungsmethoden und Lösungen, Springer 1977.
- [11] A. LINS NETO, On the number of solutions of the equation $dx/dt = \sum_{j=0}^{n} a_j(t)x^j$, $0 \le t \le 1$, for which x(0) = x(1), Invent. Math. **59** (1980), 67–76.
- [12] M.P. MARKAKIS, Closed-form solutions of certain Abel equations of the first kind, Appl. Math. Lett. 22 (2009), 1401–1405.
- [13] D.E. PANAYOTOUNAKOS, Exact analytic solutions of unsolvable classes of first and second order nonlinear ODEs. I. Abel's equations, Appl. Math. Lett. 18 (2005), 155– 162.
- [14] E.D. RAINVILLE, Necessary conditions for polynomial solutions of certain Riccati equations, The Amer. Math. Monthly 43 (1936), 473–476.

 2 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08
193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

³ Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal

E-mail address: cvalls@math.ist.utl.pt