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COMPUTING POLYNOMIAL SOLUTIONS OF

EQUIVARIANT POLYNOMIAL ABEL DIFFERENTIAL

EQUATIONS

JAUME LLIBRE2 AND CLÀUDIA VALLS3

Abstract. Let a(x) non-constant and bj(x) for j = 0, 1, 2, 3 be real
or complex polynomials in the variable x. Then the real or complex
equivariant polynomial Abel differential equations a(x)ẏ = b1(x)y +
b3(x)y

3 with b3(x) ̸= 0, and the real or complex polynomial equivariant
polynomial Abel differential equations of second kind a(x)yẏ = b0(x) +
b2(x)y

2 with b2(x) ̸= 0, have at most 7 polynomial solutions. Moreover
there are equations of these type having these maximum number of
polynomial solutions.

1. Introduction and statement of the main results

Abel differential equations of first kind

(1) a(x)ẏ = b0(x) + b1(x)y + b2(x)y
2 + b3(x)y

3

with b3(x) ̸= 0 appear in many text-books of ordinary differential equations
as one of first non-trivial examples of nonlinear differential equations, see
for instance [10]. Here the dot denotes the derivative with respect to the
independent variable x. If b3(x) = b0(x) = 0 or b2(x) = b0(x) = 0 the
Abel differential equation reduces to a Bernoulli differential equation, while
if b3(x) = 0 the Abel differential equation reduces to a Riccati differential
equation.

The Abel differential equations (1) have been studied intensively, either
calculating their solutions (see for instance [7, 11, 12, 13]), or classifying
their centers (see [2, 3, 4]), and recently in [6, 8, 9] the authors studied the
polynomial solutions of the differential equation y′ =

∑n
i=0 ai(x)y

i.

The analysis of particular solutions (as polynomial or rational solutions)
of the differential equations is important for understanding the set of so-
lutions of a differential equation. In 1936 Rainville [14] characterized the
Riccati differential equations ẏ = b0(x) + b1(x)y + y2, with b0(x) and b1(x)
polynomials in the variable x, having polynomial solutions.
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Campbell and Golomb [5] in 1954 provides an algorithm for determining
the polynomial solutions of the Riccati differential equation a(x)y′ = b0(x)+
b1(x)y+b2(x)y

2, where a, b0, b1, b2 are polynomials in the variable x. Behloul
and Cheng [1] in 2006 gave a different algorithm for finding the rational
solutions of the differential equations a(x)y′ =

∑n
i=0 bi(x)y

i, where a, bi are
polynomials in the variable x.

Here we consider the Abel differential equations (1) where a(x) ∈ F[x] \
{0}, bi(x) ∈ F[x], i = 0, 1, 2, 3, b3(x) ̸= 0, where F = R,C, and F[x] is the
ring of polynomials in the variable x with coefficients in F. We also assume
that a(x) is not constant. The case a(x) constant has been studied in [9].
We say that the Abel differential equation (1) has degree η.

Equation (1) is reversible with respect to the change of variables (x, y) →
(x,−y) if the following equation

−a(x)ẏ = −(b0(x)− b1(x)y + b2(x)y
2 − b3(x)y

3)

coincides with equation (1). In particular this implies b1(x) = b3(x) = 0,
and since b3(x) = 0 we do not consider these reversible differential equations.

The Abel differential equation (1) is equivariant with respect to the
change of variables (x, y) → (x,−y) if the following equation

−a(x)ẏ = b0(x)− b1(x)y + b2(x)y
2 − b3(x)y

3

coincides with equation (1). This implies b0(x) = b2(x) = 0. In this pa-
per first we focus our study in these kind of equivariant polynomial Abel
equations, i.e. in the equations

(2) a(x)ẏ = b1(x)y + b3(x)y
3.

Theorem 1. Real or complex equivariant polynomial Abel differential equa-
tions with b3(x) ̸= 0 and a(x) non-constant, have at most 7 polynomial
solutions. Moreover there are equations of this type having these maximum
number of polynomial solutions.

The proof of Theorem 1 is given in section 2.

Our second objective in this paper is on the Abel differential equations of
second kind, i.e. on the equations of the form

(3) a(x)yẏ = b0(x) + b1(x)y + b2(x)y
2,

where a(x), bi(x) ∈ F[x] for i = 0, 1, 2, with a(x) and b2(x) non-zero. We also
consider the ones that are equivariant with respect to the change (x, y) →
(x,−y). Then we have that b1(x) = 0 and so equation (3) becomes

(4) a(x)yẏ = b0(x) + b2(x)y
2.

We also assume that a(x) is not constant, because the case a(x) con-
stant has been studied in [6]. We say that the equivariant polynomial Abel
differential equation of second kind (4).
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Theorem 2. Real or complex equivariant polynomial Abel differential equa-
tions of second kind with b2(x) ̸= 0 and a(x) non-constant, have at most 7
polynomial solutions. Moreover there are equations of this type having these
maximum number of polynomial solutions.

The proof of Theorem 2 is given in section 3.

2. Proof of Theorem 1

First we recall that if y(x) ̸= 0 is a solution of equation (2), then −y(x)
is also a solution of equation (2) which is different from y(x).

Lemma 3. Let y0(x) ̸= 0, y1(x), y2(x) be polynomial solutions of equation
(2) such that y1(x) ̸≡ 0, y2(x) ̸≡ 0 and y2(x) ̸= −y1(x). Set y1(x) =
g(x)ỹ1(x) and y2(x) = g(x)ỹ2(x) where g = gcd(y1, y2). Then, except the
solution y = 0, all the other polynomial solutions of equation (2) can be
expressed as

(5) y0(x; c) = ± ỹ1(x)ỹ2(x)g(x)(
cỹ21(x) + (1− c)ỹ22(x)

)1/2 ,
where c is a constant and

(
cỹ21(x) + (1− c)ỹ22(x)

)1/2
is a polynomial.

Proof. Let y be a nonzero polynomial solution of equation (2). The functions
z0 = 1/y20, z1 = 1/y21 and z2 = 1/y22 are solutions of a linear differential
equation and satisfy

−a(x)żi = 2b1(x)zi + 2b3(x), i = 0, 1, 2.

Therefore we have

ż0(x)− ż1(x)

z0(x)− z1(x)
=

ż2(x)− ż1(x)

z2(x)− z1(x)
.

Integrating this equality we obtain

z0(x) = z1(x) + c(z2(x)− z1(x)),

with c an arbitrary constant. So the general solution of equation (2) is

y20(x) =
1

z0(x)
=

1

z1(x) + c(z2(x)− z1(x))

=
y21(x)y

2
2(x)

cy21(x) + (1− c)y22(x)
=

ỹ21(x)ỹ
2
2(x)g(x)

2

cỹ21(x) + (1− c)ỹ22(x)
,

with c an arbitrary constant. �

In view of Lemma 3, if y1(x), y2(x) are polynomial solutions of equation
(2) such that y1(x) ̸≡ 0, y2(x) ̸≡ 0, y2(x) ̸= −y1(x), then any other polyno-
mial solution different from them is of the form given in (5) for some appro-
priate constant c such that c ̸∈ {0, 1}. In particular, cỹ21(x)+ (1− c)ỹ22(x) is
a square of a polynomial P and P divides g. We claim that this c is unique.
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We write the condition that cỹ21(x)+(1−c)ỹ22(x) is a square of a polynomial
in the form

ỹ21 + dỹ22 = Z2
1

where d = (1 − c)/c (we recall that c ̸∈ {0, 1}). We claim that there is a
unique d for which this is possible.

For proving the claim we proceed by contradiction. Assume that there
exists d1, d2 for which

(6) ỹ21 + d1ỹ
2
2 = Z2

1 and ỹ21 + d2ỹ
2
2 = Z2

2 ,

for some polynomials Z1, Z2 and d1, d2 ̸= 1 with d1 ̸= d2. First we state and
prove an auxiliary result.

Lemma 4. The polynomial solutions of X2 + Y 2 = Z2 with pairwise co-
prime polynomials X,Y, Z are of the form

±X = 2ab, ±Y = a2 − b2, ±Z = a2 + b2

(or with X,Y interchanged) where a and b are co-prime polynomials.

Proof. It is sufficient to consider the plus case because if X,Y, Z is a solution
so are ±X,±Y,±Z. We can assume that are pairwise co-prime as, if a
polynomial divides two of them it must divide the third and can be canceled
from the identity. Let X = 2u, Y + Z = 2v and Y − Z = 2w with u, v, w
polynomials and where v and w are coprime. It follows from the relation

X2 = Z2 − Y 2 = (Z + Y )(Z − Y )

that

u2 = vw.

So v, w must be squares as they are co-prime. Let v = a2 and w = b2 where
a and b are coprime. Hence

Z = a2 + b2, Y = a2 − b2 X = 2ab

and the lemma is proved. �

In the first identity in (6) using Lemma 4 we can write

ỹ1 = 2ab,
√

d1ỹ2 = a2 − b2,

where a and b are coprime. Then we can write the second identity in (6) as

ỹ21 + d2ỹ
2
2 = ỹ21 +

(√d2√
d1

(
√

d1ỹ2)
)2

= 4a2b2 +
d2
d1

(a2 − b2)2

=
(d2
d1

− 1
)
(a2 − b2) + (a2 + b2)

=
(√

(
d2
d1

− 1)(a2 − b2)
)2

+ (a2 + b2)2.
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Since d2 ̸= d1 we have that setting γ =
√

(d2d1 − 1) then γ ̸= 0. Let

a1 =
√
γa, b1 =

√
γb.

Then

ỹ21+d2ỹ
2
2 = (γ(a2−b2))2+(a2+b2)2 = (a21−b21)

2+γ−2(a21+b21)
2 = Y 2

1 +X2
1 .

In view of Lemma 4 since Y1 = a21 − b21 we must have that X1 = 2a1b1.
Therefore

X1 = γ−1(a21 + b21) = 2a1b1, that is a21 + b21 − 2γa1b1 = 0.

This yields

a1 = γb1 ± b1
√
γ2 − 1 = b1(γ ±

√
γ2 − 1).

Since γ ±
√

γ2 − 1 ̸= 0 and a and b are coprime (and so are a1 and b1) we
get a contradiction. This proves the claim.

In short, there is at most one constant c ̸∈ {0, 1} such that cỹ21 +(1− c)ỹ22
is a square of a polynomial meaning that equation (2) has at most seven
different polynomial solutions 0, ±y1, ±y2 and y0 as in (5).

Example 1. We consider the equivariant polynomial Abel differential equa-
tion (2) with

a(x) = −2x+ 48x3 − 768x7 + 512x9,

b1(x) = 2(−1 + 96x4 − 1536x6 + 768x8),

b3(x) = 64.

This equation has the following 7 polynomial solutions

y1(x) = 0,

y2,3(x) = ±
(
2
√
2x3 +

x√
2

)
,

y4,5(x) = ±
(
x− 4x3

)
,

y6,7(x) = ±
(

1

4
√
2
− 2

√
2x4

)
.

3. Proof of Theorem 2

First we recall that if y(x) ̸= 0 is a solution of equation (4), then −y(x)
is also a solution of equation (4) which is different from y(x).

Lemma 5. Let y0(x) ̸= 0, y1(x), y2(x) be polynomial solutions of equation
(4) such that y1(x) ̸≡ 0, y2(x) ̸≡ 0 and y2(x) ̸= −y1(x). Set y1(x) =
g(x)ỹ1(x) and y2(x) = g(x)ỹ2(x) where g = gcd(y1, y2). Then, except the
solution y = 0, all the other polynomial solutions of equation (4) can be
expressed as

(7) y0(x; c) = ±g(x)
(
cỹ21(x) + (1− c)ỹ22(x)

)1/2
,
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where c is a constant.

Proof. Let y be a nonzero polynomial solution of equation (2). The functions
z0 = y20, z1 = y21 and z2 = y22 are solutions of a linear differential equation
and satisfy

a(x)żi = 2b0(x) + 2b2(x)zi, i = 0, 1, 2.

Therefore we have

ż0(x)− ż1(x)

z0(x)− z1(x)
=

ż2(x)− ż1(x)

z2(x)− z1(x)
.

Integrating this equality we obtain

z0(x) = z1(x) + c(z2(x)− z1(x)),

with c an arbitrary constant. So the general solution of equation (2) is

y20(x) = z0(x) = z1(x) + c(z2(x)− z1(x))

= (1− c)y21(x) + cy22(x) = g2(x)((1− c)ỹ21 + cỹ22),

with c an arbitrary constant. �

In view of Lemma 3, if y1(x), y2(x) are polynomial solutions of equation
(4) such that y1(x) ̸≡ 0, y2(x) ̸≡ 0 and y2(x) ̸= −y1(x) then any other
polynomial solution is of the form as in (7) for some appropriate constant c.
In particular, cỹ21(x)+(1−c)ỹ22(x) is a square of a polynomial P . Proceeding
exactly as in the proof of Theorem 1 we conclude that equation (4) has at
most seven different polynomial solutions 0, ±y1, ±y2 and y0 as in (7).

Example 2. We consider the equivariant polynomial Abel differential equa-
tion of second kind (4) with

a(x) = 2x4 − 3x2 +
1

8
,

b0(x) =
x

2
− 8x5,

b2(x) = 4x3 − 3x.

This equation has the following 7 polynomial solutions

y1(x) = 0,

y2,3(x) = ±
(
2x2 − 1

2

)
,

y4,5(x) = ±
(√

2x2 +
1

2
√
2

)
,

y6,7(x) = ±2x.
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