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DARBOUX POLYNOMIALS, BALANCES AND

PAINLEVÉ PROPERTY

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. For a given polynomial differential system we provide dif-
ferent necessary conditions for the existence of Darboux polynomials
using the balances of the system and the Painlevé property.

1. Introduction and statement of the main results

The Painlevé property appears studying the general solutions of the dif-
ferential equations viewed as functions of complex time. More precisely,
when the solutions are single-valued on its maximum domain of analytic
continuation, we say that the system has the Painlevé property. In other
words a differential system has the Painlevé property if its general solution
has no movable critical singularities, see for more details [3]. This property
imposes strong conditions, that despite the fact that it has not been proved,
one believes that in this case the system is integrable. However there is no a
precise algorithm to decide whether a system has the Painlevé property, and
only necessary conditions can be obtained, called the Painlevé test. Most
of the systems do not satisfy the Painlevé test but there is a lot of informa-
tion concerning the global behavior of the system that we can obtain from
the local analysis around the singularities in complex time and the lack of
meromorphicity can be used to prove the nonintegrability of the system with
meromorphic first integrals.

For more than half a century after its development, the Painlevé theory
for differential equations was considered an interesting, if not old fashioned
important part of the theory of special functions and little attention was
paid to it until the early 1980’s when it was discovered its relation with
soliton theories. Since then, there has been a huge amount of works relating
the Painlevé property with different branches of differential systems such as
the integrabiity of PDE, the rational and polynomial integrability of ODE’s
,... However very few is known about its relation with the Darboux theory
of integrability for polynomial differential systems. The main aim of this
pape is to focus on the connections between the existence of Darboux poly-
nomials, the Painlevé property and the Kovalevskaya exponents (introduced
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by Sophia Kowalevskaya to compute the Laurent series solutions of the rigid
body motion).

In order to state the main results of the paper we consider a polynomial
differential system of the form

(1)
dx

dt
= ẋ = P (x) with x = (x1, . . . , xn) ∈ Cn,

and P (x) = (P1(x), . . . , Pn(x)) and Pi ∈ C[x1, . . . , xn] for i = 1, . . . , n.
As usual C denotes the set of complex numbers, and C[x1, . . . , xn] denotes
the polynomial ring over C in the variables x1, . . . , xn. Here t can be real or
complex. The maximum of the degrees of the polynomials Pi for i = 1, . . . , n
is called the degree of the polynomial differential system (1).

Assume that there exists a solution of the form

(2) x = αtp, i.e. (x1, . . . , xn) = (α1t
p1 , . . . , αnt

pn)

where p = (p1, . . . , pn), α = (α1, . . . , αn) ̸= (0, . . . , 0), αi ∈ C and pi ∈ R are
given by one of the non-vanishing solutions of the algebraic equation

(3) piαi = Pi(α), i = 1, . . . , n.

For a given p there may exist different sets of values of α, called balances.
The Kowalevskaya matrix associated to a balance α is

(4) M(α) = DP (α)− diag(p1, . . . , pn),

where as usual DP (α) denotes the Jacobian matrix of P evaluated at α and
diag(p1, . . . , pn) denotes the matrix whose diagonal is equal to (p1, . . . , pn)
and zeroes in the rest. The eigenvalues of the matrix M are called the Ko-
valevskaya exponents of the balance α and are denoted by ρ = (ρ1, . . . , ρn).
It can be shown that there always exists a Kowalevskaya exponent equal to
−1 related to the arbitrariness of the origin of the parameterizations of the
solution by the time. The eigenvector associated to the eigenvalue ρ1 = −1
is pα = (p1α1, . . . , pnαn). For more details see [3] or [2].

In section 2 we recall how to compute the solutions of the form (2) when
the polynomial differential system is quasi-homogeneous.

A non-constant polynomial F (x1, . . . , xn) is a Darboux polynomial of sys-
tem (1) if it satisfies

(5)

n∑
i=1

Pi
∂F

∂xi
= P · ∇F = KF,

where K ∈ C[x1, . . . , xn] is called the cofactor and has degree at most m−1,
if m is the degree of the polynomial differential system (1). As usual ∇F
denotes the gradient of the function F . We recall that F is a Darboux
polynomial if and only if F (x) = 0 is an invariant hypersurface of system
(1), i.e. if a solution of system (1) has a point on the hypersurface F (x) = 0,
then the whole solution is contained in this hypersurface.
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A polynomial F is said to be weight-homogeneous if there exists d ∈ Q
and s = (s1, . . . , sn) ∈ Qn such that for an arbitrary positive real a we have

F (as1x1, . . . , a
snxn) = adF (x1, . . . , xn).

Here d is called the weight degree of the polynomial F and s is the weight
exponent of F .

The first result of this paper is the following.

Theorem 1. Assume that the polynomial differential system (1) admits the
particular solution x = αtp given in (2). If F (x) is a weight-homogeneous
Darboux polynomial of weight degree d of system (1), then ∇F (α) ̸= 0 and
its cofactor K cannot be constant.

The proof of Theorem 1 is given in section 4.

Theorem 1 is closely related with Theorem 5.4 of [3] which is due to
Yoshida (see [7, 8]) and states: Under the assumptions of Theorem 1 if
I(x) is a weight–homogeneous first integral of weight degree d of system (1)
satisfying that ∇I(α) ̸= 0, then d is a Kowalevskaya exponent of the matrix
M(α) given in (4).

For the second result we need some more definitions and notation. We
can write the polynomial Pi(x) for i = 1, . . . , n in the form

(6) Pi(x) =

mi∑
j=0

P
(j)
i (x)

where P
(j)
i (x) is a weight–homogeneous polynomial of weight exponent p ∈

Qn with weight degree pi + q(j) − 1, i.e.

(7) P
(j)
i (tpx) = tpi+q(j)−1P

(j)
i (x)

for i = 1, . . . , n and j = 0, 1, . . . ,mi, with q(j) ∈ Q and q(0) = 0 < q(1) <
· · · < q(m), where m is the maximum of the {m1, . . . ,mn}.

Assume that ẋ = P (0)(x) has the solution x = αtp where t = t − t∗ for
some complex t∗, and α ∈ Cn with |α| = |α1| + · · · + |αn| ̸= 0. Then we
say that the polynomial differential system (1) admits a dominant balance
{α, p}.

We note that any balance of system (1) is a dominant balance taking

P
(0)
i = Pi. An example of a polynomial differential system with a dominant

balance can be found in section 3.

Now we study the relation between the Kovalevskaya exponents and Dar-
boux polynomials.

Theorem 2. Assume that the polynomial differential system (1) admits a
dominant balance {α, p} such that the Kovalevskaya matrix

(8) M(α) = DP (0)(α)− diag(p1, . . . , pn),
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diagonalizes. Then the following statements hold.

(a) If the eigenvalues (ρ1, . . . , ρn) (the Kovalevskaya exponents ) of M(α)
are Z-independent and F (x) is a Darboux polynomial of system (1),

then F (x) must have a cofactor K such that K(0)(α) is not a rational
number.

(b) If the Kovalevskaya exponents (ρ1, . . . , ρn) of M are N-independent
and F (x) is a Darboux polynomial of system (1), then F (x) must

have a cofactor K such that K(0)(α) /∈ {0, 1, 2, 3, . . .}.

Moreover we explore some connections between Painlevé property and
Darboux polynomials. The first result connecting the Painlevé property
with the Darboux polynomials is the following.

Theorem 3. Assume that the polynomial differential system (1) satisfies
the Painlevé property. Then if the system has a Darboux polynomial its
cofactor K must satisfy K(α) ∈ Z for all balances α of the system.

We also consider a kind of converse result of Theorem 3.

Theorem 4. Assume that the polynomial differential system (1) admits
a dominant balance {α, p} and it has a Darboux polynomial with cofactor

K such that K(0)(α) ̸∈ Z. Then system (1) cannot satisfy the Painlevé
property.

The proofs of Theorems 2, 3 and 4 are given in section 5.

See section 6 for some examples of systems satisfying the conditions of
Theorems 1, 2, 3 and 4 and the conclusion section for some comments on
our results.

2. Quasi-homogeneous polynomials differential systems

The polynomial differential system (1) is quasi-homogeneous if there exists
s = (s1, . . . , sn) ∈ Nn and r ∈ N such that for an arbitrary positive real a
we have

Pi(a
s1x1, . . . , a

snxn) = asi−1+rPi(x1, . . . , xn)

for i = 1, . . . , n. We call s = (s1, . . . , sn) the weight exponent of system (1)
and r the weight degree with respect to the weight exponent s. In partic-
ular the case that s = (1, . . . , 1) we say that system (1) is a homogeneous
polynomial differential system of degree r.

If a polynomial differential system (1) is quasi-homogeneous with weight
exponent s and weight degree r > 1 then the system is invariant under the
change of variables

xi → a−pi , t → a−1t,
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where

pi = si/(1− r).

This fact implies that in this case there exists solutions of the form (2)
with pi = si/(1 − r) for i = 1, . . . , n and the coefficients αi satisfying (3).
The integrability of quasi-homogeneous polynomial differential systems have
been investigated by several authors, see for instance [2, 3, 5, 6, 8, 9, 10].

3. Dominant balances

Consider the polynomial differential system (1). We select a suitable
weight change of variables denoted byX = (X1, . . . , Xn) = asx = (as1x1, . . .,
asnxn) where si ∈ N for i = 0, . . . , n such that (1) becomes

Ẋi = a−s0

r∑
j=0

ajPi,m−j(X), for i = 1, . . . , n,

where r ≤ m = degree(P ) and Pi,m−j is a weight–homogeneous polynomial.

In particular Pi,m(X) = P
(0)
i (x) and Pi,m−j(X) = P

(j)
i (x) for j = 1, . . . , r.

In this case p = (s1, . . . , sn).

Consider the Lorenz system

ẋ1 = s(x2 − x1),

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = −bx3 + x1x2,

(9)

where s, r, b are real parameters and s ̸= 0. We make the change of variables

x1 = a−1X1, x2 = a−2X2, x3 = a−2X3

system (9) becomes

Ẋ1 = a−1s(X2 − aX1),

Ẋ2 = a−1(−X1X3 − aX2 + ra2X1),

Ẋ3 = a−1(X1X2 − baX3).

(10)

Equation (10) implies that

P (0) = (sx2,−x1x3, x1x2), P (1) = (−sx1,−x2,−bx3), P (2) = (0, rx1, 0).

Two dominant balances for system (9) are {α, p} with α = (−2i, 2i/s,−2/s)
and p = (−1,−2,−2); and {α, p} with α = (2i,−2i/s,−2/s) and p =

(−1,−2,−2). Note that here q(1) = 1 and q(2) = 2.
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4. proof of Theorem 1

We first introduce two auxiliary results.

Lemma 5. Let F (x) be a Darboux polynomial with cofactor K of system
(1) and x̂(t) = (x̂1(t), . . . , x̂n(t)) a particular solution of system (1). If K =
k0 ∈ Cn, then ū(t) = e−k0t∇F (x̂(t)) is a solution of the adjoint equation,
that is,

(11) ˙̄u = −DP (x̂(t)ū.

Proof. Let HF be the Hessian of the matrix of the polynomial F . To show
that ū is a solution of the adjoint equation, we compute its time derivative.
Note that

˙̄u =
d

dt
ū =

d

dt
(e−k0t∇F (x̂(t))

= e−k0t d

dt
(∇F (x̂(t))− k0e

−k0t∇F (x̂(t))

= e−k0tHF (x̂(t)) · P (x̂(t))− k0e
−k0t∇F (x̂(t))

= e−k0t∇(P (x̂(t)) · ∇F (x̂(t)))− e−k0tDP (x̂(t))∇F (x̂(t))

− k0e
−k0t∇F (x̂(t))

= −DP (x̂(t))(e−k0t∇F (x̂(t)))

= −DP (x̂(t))ū.

This completes the proof of the lemma. �

The following lemma will be the central tool in the nonintegrability re-
sults. Its proof uses Lemma 5.

Lemma 6. Let F (x) be a Darboux polynomial with cofactor K = k0 ∈ Cn

of system (1). For a solution x̄(t) of the polynomial differential system (1),
let u(t) be the solution of the variational equation u̇ = DP (x̂(t))u. Then
the function I = e−k0t∇F (x̂(t)) ·u is a Darboux invariant of this variational
equation.

Proof. We compute the time derivative of I and we show that it is zero.
Indeed, by Lemma 5

dI

dt
=

d

dt
(e−k0t∇F (x̂(t)) · u)

=
d

dt
(e−k0t∇F (x̂(t))) · u+ (e−k0t∇F (x̂(t))) · du

dt

= −e−k0t(DP (x̂(t))∇F (x̂(t))) · u+ (e−k0t(DP (x̂(t))∇F (x̂(t))) · u
= 0.

This completes the proof of the lemma. �
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Now we continue with the proof of the theorem. We proceed by contradic-
tion. Consider system (1) which admits the particular solution x = αtp. As-
sume that it has a weight-homogeneous Darboux polynomial F (x) such that
∇F (α) ̸≡ 0 and with cofactor K = k0. We can apply Lemma 6. The exis-
tence of F (x) implies the existence of a first integral I = e−k0t∇F (αtp)u ̸≡ 0
for the variational equation

(12) u̇ = DP (αtp)u.

The general solution of the variational equation is of the form u =
∑k

i=1 β
(i)tρi

where β(i) is a polynomial in log t and can be expressed in terms of the gener-
alized eigenvectors of the Kowalevskaya matrixK = Df(α)−diag(p1, . . . , pn)
and ρi are the Kowalevskaya exponents, for more details see section 3.8.2 of
[3]. This general solution contains n arbitrary parameters. We can therefore
evaluate I on this solution to obtain

I =

k∑
i=1

e−k0tt−d+ρi∇F (α)β(i).

If K is semi-simple (i.e., it can be diagonalized), then k = n and the

eigenvectors β(i) form a set of n linearly independent vectors which at least
one of them, say i = j is such that ∇F (α)β(j) ̸= 0, otherwise I would be
zero. Since I is constant in time, we get a contradiction.

If K is not semi-simple, then there is a complete set of generalized eigen-
vectors γ(1), . . . , γ(n) forK for which at least one of them satisfies∇F (α)γ(i) ̸=
0 and the contradiction follows. This completes the proof of the theorem.

5. Proof of the remaining results

In this section we provide the proof of Theorems 2, 3 and 4. To prove
Theorem 2 we will use the following theorem which is Theorem 5.7 in [3].
We continue to decompose any polynomial as in (6).

Theorem 7. Assume that the polynomial differential system (1) has a Dar-
boux polynomial F with cofactor K and a dominant balance {α, p} with
Kovalevskaya exponents ρ = (−1, ρ̃) with ρ̃ ∈ Cn−1. Then there exists a
vector m = (m2, . . . ,mn) of positive integers such that

(13) ρ̃ ·m = d+K(0)(α)

where d = deg(F (0)) and |m| ≤ d.

Proof of Theorem 2. The proof of both statements will be done by contra-
diction.

To prove statement (a) we assume that there is a Darboux polynomial

F (x) such that K(0)(α) is a rational number. Then it follows from Theorem

7 that there exist integers i2, . . . , im such that i2ρ2 + . . . + inρn = d̃ where
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d̃ ∈ Q. This relation can be written as j1ρ1 + j2ρ2 + . . . + jnρn = 0 for
some integers j1, . . . , jn. However this is impossible because ρ1, . . . , ρn are
Z-independent.

To prove statement (b) we assume that there is a Darboux polynomial

F (x) such that K(0)(α) is a non-negative integer. Then it follows from

Theorem 7 that there exist integers i2, . . . , im such that i2ρ2+ . . .+ inρn = d̃
where d̃ ∈ Z. This relation can be written as d̃ρ1 + i2ρ2 + . . .+ inρn = 0 for
some naturals i1, . . . , in. However this is impossible because ρ1, . . . , ρn are
N-independent. �

To prove Theorem 3 we will use again Theorem 7 and the following result
proved in [3].

Proposition 8. Consider a system ẋ = f(x) where f(x) is analytic and
assume that it satisfies the Painlevé property. Then for all possible balances
{α, p} the Kovalevskaya matrix K diagonalizes and the Kovalevskaya expo-
nents (ρ1, . . . , ρn) are integers.

Proof of Theorem 3. It follows from Proposition 8 that for all possible bal-
ances {α, p} the Kovalevskaya matrix K diagonalizes and the Kovalevskaya
exponents ρ = (−1, ρ2, . . . , ρn) = (−1, ρ̃) are integers. Now we apply Theo-
rem 7 and from the notation and definitions introduced there we conclude
that

K(α) = ρ̃ ·m− d ∈ Z,
and the proof is completed. �

Proof of Theorem 4. It follows from Theorem 7 that ρ̃ ·m ̸∈ Z (we have used
the notations and definitions introduced there). Therefore there must exists
at least one Kovalevskaya exponent which is not an integer number, and so
it follows from Proposition 8 that system (1) cannot satisfy the Painlevé
property. �

6. Examples

6.1. Example for Theorem 1. Consider the system

ẋ1 = −x3,

ẋ2 = −x4,

ẋ3 = 3i(x2 − ix1)(x2 + ix1)
2 − i(x2 + ix1)

3,

ẋ4 = 3(x2 − ix1)(x2 + ix1)
2 + i(x2 + ix1)

3.

(14)

Note that it is a quasi–homogeneous polynomial differential system with
weight exponent s = (1, 1, 2, 2) and weight degree r = 2, see section 2.
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System (14) has the Darboux polynomials

F1(x) = x3 − ix4 − (x2 + ix1)
2, F2 = x3 − ix4 + (x2 + ix1)

2

which are both weight–homogeneous with weight degree 2. The cofactor K1

of F1 is −2(x1− ix2) and the cofactor K2 of F2 is 2(x1− ix2). None of these
cofactors are constant and ∇Fj(α) ̸= 0 for j = 1, 2, as stated in Theorem
1. Note that it is not necessary to compute the α corresponding to p = −s
because ∇Fj = (∗, ∗, 1,−i).

6.2. Example for Theorem 2. Now consider the Lorenz polynomial dif-
ferential system (9) of section 3. We recall that a dominant balance for
system (9) is {α, p} with α = (−2i, 2i/s,−2/s) and p = (−1,−2,−2). Now
we compute the matrix M(α) of (8) and we get

M(α) =

 1 s 0
2/s 2 2i
2i/s −2i 2

 ,

whose eigenvalues are −1, 2, 4. For the other dominant balance {α, p} with
α = (2i,−2i/s,−2/s) and p = (−1,−2,−2) we have that

M(α) =

 1 s 0
2/s 2 −2i

−2i/s 2i 2

 ,

whose eigenvalues are again −1, 2, 4. Note that these Kowalevskaya expo-
nents are N–dependent.

On the other hand for a non–negative integer n the Lorenz system with
s = −n/2 and b = 2s has the Darboux polynomial x21 − 2sx3 with cofac-

tor K = K(0)(α) = n. This Lorenz system satisfies the contrapositive of
statement (b) of Theorem 2.

6.3. Example for Theorem 3. Consider the polynomial differential sys-
tem

(15) ẋ1 = x21, ẋ2 = x21.

The general solution of this system is

x1(t) = − 1

t+ c1
, x2(t) = c2 −

1

t+ c1
,

with c1 and c2 constant. Since this general solution is single–valued on its
maximum domain of analytic continuation in C, system (15) satisfies the
Painlevé property.

System (15) is quasi–homogeneous with weight exponent (1, 1) and weight
degree 2. So p = (−1,−1) and the system has a solution of the form αtp

with α = (−1,−1), see for more details section 3. Moreover this system
has the Darboux polynomial F = x1 with cofactor K = x1. Therefore
K(α) = −1 ∈ Z. So this differential system satisfies Theorem 3.
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6.4. Example for Theorem 4. The Lorenz system with the parameters
s = 1/3 and b = 0 does not satisfy the Painlevé property, see for details [4].
This system has the Darboux polynomial x41−4x21x3/3−4x22/9−8x1x2/9+
4rx21/3 with cofactor K = −4/3 /∈ Z. So it also satisfies Theorem 4.

Furthermore the Lorenz system with the parameters s = 1/2, b = 1
and r = 0 satisfies the Painlevé property, see again [4]. This system has the
Darboux polynomials x21−2sx3 and x22+x23 with cofactors −2s = −1 ∈ Z and
−2 ∈ Z, respectively. So this example satisfies the contrapositive statement
of Theorem 4.

7. Conclusions

Theorem 1 provides two necessary conditions for the existence of a Dar-
boux polynomial for the polynomial differential system (1), one of them
related with the balances of the system.

Theorem 2 provides two necessary conditions for the existence of a Dar-
boux polynomial of system (1), but now one of these conditions is related

with the balances of the system ẋ = P (0)(x) instead of the balances of system
(1).

Theorems 3 and 4 provide necessary conditions for the existence of a
Darboux polynomial of system (1) using the Painlevé property.

Theorem 7 due to Goriely provides different necessary conditions for the
existence of a Darboux polynomial of system (1) distinct to the ones given
in Theorems 1–4.
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