ON THE UNIQUENESS OF ALGEBRAIC LIMIT CYCLES FOR QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS WITH TWO PAIRS OF EQUILIBRIUM POINTS AT INFINITY

JAUME LLIBRE AND CLAUDIA VALLS

ABSTRACT. Algebraic limit cycles in quadratic polynomial differential systems started to be studied in 1958, and few years later the following conjecture appeared: Quadratic polynomial differential systems have at most one algebraic limit cycle.

We prove that for a quadratic polynomial differential system having two pairs of diametrally opposite equilibrium points at infinity, has at most one algebraic limit cycle. Our result provides a partial positive answer to this conjecture.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let $\mathbb{R}[x, y]$ be the ring of all real polynomials in the variables x and y. Differential systems of the form

$$\frac{dx}{dt} = \dot{x} = P(x, y), \quad \frac{dy}{dt} = \dot{y} = Q(x, y), \tag{1}$$

where $P, Q \in \mathbb{R}[x, y]$ with t real are called *real polynomial differential systems*. We say that system (1) has degree m if the maximum degree of the polynomials P and Q is m. When m = 2, system (1) is called a quadratic system.

System (1) has

$$\mathcal{X} = P(x, y)\frac{\partial}{\partial x} + Q(x, y)\frac{\partial}{\partial y}$$
(2)

as its polynomial vector field.

The algebraic curve g(x, y) = 0 with $g = g(x, y) \in \mathbb{R}[x, y]$ is an *invariant* algebraic curve of the \mathcal{X} if for some polynomial $K \in \mathbb{R}[x, y]$, we have

$$\mathcal{X}g = P\frac{\partial g}{\partial x} + Q\frac{\partial g}{\partial y} = Kg$$

The polynomial K = K(x, y) is called *the cofactor* of g. We recall that g = 0 is *invariant* by \mathcal{X} .

We say that an invariant algebraic curve g = 0 is *irreducible* when g is irreducible in $\mathbb{R}[x, y]$. An isolated periodic orbit in the set of periodic orbits

²⁰¹⁰ Mathematics Subject Classification. Primary: 37D99.

Key words and phrases. algebraic limit cycle, quadratic polynomial differential system, quadratic polynomial vector field.