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ON THE UNIQUENESS OF ALGEBRAIC LIMIT CYCLES

FOR QUADRATIC POLYNOMIAL DIFFERENTIAL

SYSTEMS WITH TWO PAIRS OF EQUILIBRIUM POINTS

AT INFINITY

JAUME LLIBRE AND CLAUDIA VALLS

Abstract. Algebraic limit cycles in quadratic polynomial differential
systems started to be studied in 1958, and few years later the following
conjecture appeared: Quadratic polynomial differential systems have at
most one algebraic limit cycle.

We prove that for a quadratic polynomial differential system having
two pairs of diametrally opposite equilibrium points at infinity, has at
most one algebraic limit cycle. Our result provides a partial positive
answer to this conjecture.

1. Introduction and statement of the main results

Let R[x, y] be the ring of all real polynomials in the variables x and y.
Differential systems of the form

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1)

where P,Q ∈ R[x, y] with t real are called real polynomial differential sys-
tems. We say that system (1) has degree m if the maximum degree of the
polynomials P and Q is m. When m = 2, system (1) is called a quadratic
system.

System (1) has

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
(2)

as its polynomial vector field.

The algebraic curve g(x, y) = 0 with g = g(x, y) ∈ R[x, y] is an invariant
algebraic curve of the X if for some polynomial K ∈ R[x, y], we have

X g = P
∂g

∂x
+Q

∂g

∂y
= Kg.

The polynomial K = K(x, y) is called the cofactor of g. We recall that
g = 0 is invariant by X .

We say that an invariant algebraic curve g = 0 is irreducible when g is
irreducible in R[x, y]. An isolated periodic orbit in the set of periodic orbits
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of X is called a limit cycle. An oval of an irreducible invariant algebraic
curve of X of degree n which is a limit cycle is called an algebraic limit
cycle.

The following problem is a simpler version of the second part of Hilbert’s
16th problem (see [17]): Let Σm be the set of all real polynomial vector fields
(2) of degree m having invariant algebraic curves. Is there a uniform upper
bound on the number of algebraic limit cycles of any polynomial vector field
of Σm?

A positive answer was given in [21] where the authors consider the case in
which all the invariant algebraic curves gj = 0 of Σm are generic, i.e., they
satisfy the following assumptions:

• gj = 0 has not points such that gjx = gj = gjy = 0,
• gj have no repeated factors,
• if two curves intersect at a point in the affine plane they are transver-
sal at this point,

• there are no more than two curves gj = 0 meeting at any point in
the affine plane, and

• there are no two curves having a common factor in the highest order
homogeneous terms.

More precisely, they proved that for these generic curves, the number of limit
cycles is 1+(m−1)(m−2)/2 ifm is even and (m−1)(m−2)/2 ifm is odd, and
these bounds are achieved. For other related papers treating this problem,
see [22] and [29]. However there are plenty of invariant algebraic curves
that do not satisfy these generic conditions, so for Σ2 it remains to solve
the following open problem: to know if when the invariant algebraic curves
of a quadratic polynomial differential system do not satisfy these generic
conditions, this system also has at most one algebraic limit cycle.

In [27] it is proved that quadratic polynomial vector fields can have alge-
braic limit cycles of degree 2, and that they are unique whenever they exist.
In [13, 14, 15] the author proved that quadratic vector fields do not have
algebraic limit cycles of degree 3 (see also [6, 18, 25, 28] for different and
shorter proofs). In [26] it is found the first class of algebraic limit cycles of
degree 4 inside the quadratic vector fields. The second class was found in
[16]. More recently, two new classes have been found and in [9] the authors
proved that there are no other algebraic limit cycles of degree 4 for qua-
dratic vector fields. The uniqueness of these limit cycles was proved in [11].
It is known that there are quadratic polynomial differential systems having
algebraic limit cycles of degree 5 and 6, see [9], and that this limit cycle
is the unique one for these differential systems. Other results on algebraic
limit cycles can be found in [20].

It turns out that the open problem mentioned above is too hard to deal
with and that is why a simpler version of this problem has kept the at-
tention of the researchers for many years. Thus the following conjecture
appeared explicitly in [19, 22], but was known many years before among the
mathematicians working in this subject.
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In [24] the authors proved the conjecture in the case in which the quadratic
polynomial differential systems have only one pair of equilibrium points at
infinity. So it is still open the conjecture in the cases in which the system
has two or three pairs of diametrally opposite equilibrium points at infinity.
Here we solve the conjecture when the quadratic differential systems have
two pairs of diametrally opposite equilibrium points at infinity.

Theorem 1. Quadratic polynomial differential systems with at most two
pairs of equilibrium points at infinity have at most one algebraic limit cycle.

The proof of Theorem 1 is divided in two sections 3 and 4. In section 2 we
state some known facts about quadratic polynomial differential systems that
we shall need and that are well known. We have also added an appendix
where we state an auxiliary result that we shall need but that is not known.

2. Quadratic systems: known results

The following theorems are well known.

The next result is proved in [5, 12].

Theorem 2. Quadratic polynomial differential systems having an invariant
algebraic straight line have at most one limit cycle.

For a proof of the next result see [11, 6].

Theorem 3. Quadratic polynomial differential systems having an algebraic
limit cycle of degree two or four have at most one limit cycle.

In the papers [6, 18, 25, 28] there are different proofs of the next result.

Theorem 4. Quadratic polynomial differential systems have no algebraic
limit cycles of degree 3.

In view of Theorems 3 and 4 from now on we will consider algebraic limit
cycles of degree n ≥ 5.

The next result is Proposition 8 of [23].

Proposition 5. All finite equilibrium points of a quadratic polynomial dif-
ferential system (3) and all points satisfying ∂g/∂x = ∂g/∂y = 0 of an
invariant algebraic curve g = 0 are contained in the union of {K = 0} and
{g = 0}, where K is the cofactor of g = 0.

From Theorem 4 of [23] and its proof and Theorem 2 of [24] we have:

Theorem 6. If a quadratic polynomial differential system has an algebraic
limit cycle of degree n, then it can be transformed, through an affine change
of variables and a scaling of the time, into one of the following two systems.
First

ẋ = ξx− y + ax2 + bxy,
ẏ = x− ξy + dx2 + exy + fy2,

(3)
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with d ̸= 0 and ξ ∈ (−1, 1), and second

ẋ = −y + ax2 + bxy + cy2,
ẏ = x+ exy + fy2.

(4)

The cofactor of g = 0 in both cases is ny.

It is pointed out in [23] that if systems (3) and (4) have a limit cycle, it
must surround the origin. The next result is Proposition 13 of [23].

Proposition 7. Let P2 and Q2 be the homogeneous components of P and
Q, respectively. If yP2 − xQ2 ≡ 0, then the quadratic system has no limit
cycles.

Sometimes we shall use the extension of the real polynomial differential
system to the complex projective space for obtaining additional information
on the real system. For more details on this extension see for instance [5, 6].
The following result is Lemma 11 of [23].

Proposition 8. The complex invariant algebraic curve g = 0 must intersect
the infinity at least in one point, eventually complex. All the intersection
points must be equilibrium points of the extended vector field in the complex
projective space.

The following lemma due to Christopher [8] says how must be the higher
degree terms of an invariant algebraic curve g = 0 of a polynomial differential
system (1).

Proposition 9. Suppose that a polynomial differential system (1) of degree
2 has the invariant algebraic curve g = 0 of degree n. Let P2, Q2 and gn be
the homogeneous components of P,Q and g of degree 2 and n respectively.
Then the irreducible factors of gn must be factors of yP2 − xQ2.

The proof of the next theorem can be found in [7] (see also Theorem A2
in [10]).

Theorem 10. System

ẋ = −y + a1x+ a2x
2, ẏ = x(1 + a3x+ a4y),

has at most one limit cycle surrounding the origin.

The proof of the next theorem can be found in [24] (see Theorem 2).

Theorem 11. A quadratic polynomial differential system with at most one
pair of equilibrium points at infinity, has at most one limit cycle.

In view of Theorem 11 in order to prove Theorem 1 we can restrict our-
selves to study the quadratic polynomial differential systems having two
pairs of equilibrium points at infinity.

We now give necessary conditions in order that a polynomial be a cofactor
of an invariant algebraic curve.

Let g(x, y) = 0 be an invariant algebraic curve of a planar polynomial
differential equation of the form ẋ = P (x, y), ẏ = Q(x, y) where P,Q are
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polynomials of degree m, and (x0, y0) a point such that g(x0, y0) = 0. We
may expand g(x, y) in powers of x − x0 and y − y0: g(x, y) = gs(x, y) +
gs+1(x, y) + · · ·+ gn(x, y) where n is the degree of g and gj(x, y) are homo-
geneous polynomials of degree j in powers of x − x0 and y − y0. Let s be
the lowest degree in this expansion with gs(x, y) ̸≡ 0. Since g(x0, y0) = 0 we
have s ≥ 1. As gs(x, y) is a homogeneous polynomial of degree s in powers
of x− x0 and y− y0 it factorizes in s linear homogeneous polynomials, that
is,

gs(x, y) = ℓ1ℓ2 · · · ℓs ℓi = ai(x−x0)+ bi(y−y0), ai, bi ∈ C, i = 1, 2 . . . , s.

We say that gs(x, y) = 0 is the equation of the tangents of the curve
g(x, y) = 0 in (x0, y0). We will denote by λ, µ the eigenvalues of the lin-
ear approximation at this point (x0, y0). The following result is proved in
[3] (see Theorems 13 and 14). As usual N denotes the set of positive integers.

Theorem 12. We consider a system x′ = P (x, y), y′ = Q(x, y) where P,Q
are polynomials of degree m and (x0, y0) be one of its equilibrium points
and g(x, y) = 0 be an irreducible invariant algebraic curve with cofactor
k(x, y). If g(x0, y0) ̸= 0 then k(x0, y0) = 0. Moreover, if g(x0, y0) = 0,
with the described notation, we have that gs(x, y) = (ℓλ)

r(ℓµ)
s−r with r, s

non-negative integers and r ≤ s and

k(x0, y0) = rµ+ (s− r)λ.

Furthermore:

(a) if either µ ̸= 0 and λ and µ are rationally independent, or λ/µ < 0,
or µ = 0, then

– either s = 2, r = 1 and g2 = ℓλℓµ;
– or s = 1 and g1 = ℓλ;
– or s = 1 and g1 = ℓµ.

(b) if µ ̸= 0 and λ and µ are rationally dependent and λ/µ > 0 we
assume that λ/µ > 1.

– if λ/µ = d with d ∈ N and d > 1, and the differential system is
linearizable in (x0, y0) then there exists a non-negative integer
r and ε ∈ {0, 1} such that s = r + ε and gs = (ℓλ)

ε(ℓµ)
r.

– if λ/µ = d with d ∈ N, d > 1 and the differential system is
non-linearizable in (x0, y0), then s = 1 and g1 = ℓλ.

– if λ/µ = p/q with p, q ∈ N and 1 < q < p, then
∗ either s = 1 and g1 = ℓλ;
∗ or there exists a non-negative integer r and ε ∈ {0, 1}
such that s = rq + ε and gs = (ℓλ)

ε(ℓµ)
rq;

∗ or there exists a non-negative integer r and ε ∈ {0, 1}
such that s = rq + ε+ 1 and gs = (ℓλ)

ε(ℓµ)
rq+1.

It is stated in [3] that Theorem 12 is also valid in CP(2). We recall
that CP(2) = {C3 \ {(0, 0, 0)}}/ ∼ with the equivalence relation [X,Y, Z] ∼
[X∗, Y ∗, Z∗] if and only if there exists ν ∈ C \ {0} such that [X∗, Y ∗, Z∗] =
ν[X,Y, Z]. Consider a point p := [X0, Y0, Z0] ∈ CP(2), and without loss
of generality we assume that Z0 ̸= 0. We define the local coordinates in p
by x = X/Z, and y = Y/Z. So, in local coordinates we have p = (x0, y0)
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with x0 = X0/Z0 and y0 = Y0/Z0. We consider P̃ (x, y) = ZmP
(
X
Z , YZ

)
and Q̃(x, y) = ZmQ

(
X
Z , YZ

)
. The coordinates (x, y) are usually called finite

coordinates and the set of points [X,Y, Z] ∈ CP(2) with Z = 0 is called
the line at infinity. An invariant algebraic curve f(x, y) = 0 with cofac-
tor k(x, y) defines an invariant algebraic curve in CP(2) by F (X,Y, Z) =
Znf(X/Z, Y/Z) where n is the degree of f , and the associated cofactor is
k(X,Y, Z) = Zm−1k(X/Z, Y/Z).

3. Proof of Theorem 1 for system (3)

Theorem 1 will be an immediate consequence of the proof of the following
theorem.

Theorem 13. Let g = 0 be an invariant algebraic curve of degree n ≥ 5 of
a quadratic polynomial differential system (3). Assume that g = 0 has two
pairs of equilibrium points at infinity. Then there is at most one limit cycle
on g = 0.

Proof. Let g =
(∑m

i=0 gn−i,ix
n−iyi

)
+ · · · , with 0 ≤ m ≤ n and gn−m,m ̸= 0,

where the dot denotes the terms of order n − 1 and lower. The coefficient
of the term xn−mym+1 in the expression of ġ − nyg = 0 is equal to

gn−m,m((n−m)b+mf − n) = 0.

Therefore

b = (n−mf)/(n−m) if m < n and f = 1 if m = n.

From Proposition 9 we have

gn =

m∑
i=0

gn−i,ix
n−iyi = xn−m(x− x1y)

k(x− x2y)
m−k,

where

x1,2 =
a− e±

√
∆

2d
with ∆ = (a− e)2 + 4d(b− f) (5)

are the roots of the polynomial dx2 − (a − e)x − (b − f) = 0. The case
in which ∆ < 0 was proved in [24] because in that case at infinity there is
either a unique pair of singular points which are the endpoints of x = 0.
Here, either x2 = 0 or x1 = x2 ̸= 0 (otherwise at infinity there is a unique
pair of singular points or three pairs of singular points). In the first case
f = b (and ∆ = (a− e)2), and in the second case f = b− (a− e)2/(4d) with
a ̸= e (and ∆ = 0).

From the proof of Theorem 5 of [23] when m = n we can always assume

that g(x) = (x−x1y)
n/2(x−x2y)

n/2 with x1 = x2 ̸∈ R being x2 the complex
conjugate of x1. But since from (5) x1 and x2 are real, we can assumem < n.
We consider two cases: b = f and f = b− (a− e)2/(4d).

Case 1: f = b. In this case f = b = 1. We consider two different subcases:
m = 0 and m ≥ 1.
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Subcase 1.1: m = 0. The terms of degree n of g are gn = xn. Imposing that(
ax2 + xy

)∂gn
∂x

+ (dx2 + exy + y2)
∂gn
∂y

− nygn = 0, (6)

we get that naxn+1 = 0 which implies a = 0. Then system (3) becomes

ẋ = ξx− y + xy, ẏ = x− ξy + dx2 + exy + fy2 (7)

with f = 1. If ξ = 0 then (7) has the invariant straight line x = 1. In view
of Theorem 2 it has at most one limit cycle. So, from now on we assume
ξ ̸= 0.

Now we compute the terms of degree n − 1. In view of Lemma 15 we
must solve the equation

(dx2 + exy + (f − 1)y2)
∂gn−1

∂y
+ n(ξx− y)xn−1 − ygn−1 = 0. (8)

Moreover setting gn−1 = −nxn−1 + hn−1 we rewrite (15) for hn−1 in the
form

(dx2 + exy + (f − 1)y2)
∂hn−1

∂y
+ nξxn − yhn−1 = 0. (9)

We recall that f = 1 and we consider different cases.

Subcase 1.1.1: e = 0. In this case

hn−1 = −ey
2/(2dx2)

(
ξn

√
π√

2d
xn−1Erf

( y√
2dx

)
+K(x)

)
,

whereK(x) is any function in the variable x and Erf is the error function (see
[1] for more details). Taking into account that hn−1 must be a homogeneous
polynomial of degree n− 1 in the variables x and y and that ξ ̸= 0 we get a
contradiction.

Subcase 1.1.2: e ̸= 0. In this case we have

hn−1 = ey/(ex)
(
ed/e

2
ξnxn−1E1− d

e2

(dx+ ey

e2x

)
+ (dx+ ey)−d/e2K(x)

)
,

where K(x) is any function in the variable x and En is the exponential
integral function (see [1] for details, which can be written as a series). Since
ξn ̸= 0, the function hn−1 is never a homogeneous polynomial of degree n−1
in the variables x and y. Hence, this case is not possible.

Subcase 1.2: m ≥ 1. Then gn = xn−m(x − (a − e)y/d)m. In this case
imposing (6) we get that e = a(m − n)/m. Note that a ̸= 0 otherwise
e = 0 which is not possible because system (3) would have a unique pair of
diametrally opposite equilibrium points at infinity. The terms of degree n
of g are gn = xn−m(x− any/(dm))m.

If we pass to the coordinates [X,Y, Z], the equilibrium points at infinity
have all of them coordinate Y0 ̸= 0, so the local coordinates (u, v) with
u = X/Y and v = Z/Y are taken at these points in order to apply Theorem
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12. Then system (3) with f = b = 1 and e = a(m − n)/m in coordinates
(u, v) becomes

u̇ =
1

m
(anu2 − dmu3 −mv + 2ξmuv −mu2v),

v̇ = − v

m
(m+ amu− anu+ dmu2 − ξmv +muv),

(10)

and

g(u, v) = un−m(u− an/(dm))m + vgn−1(u) + v2gn−2(u) + · · ·+ vng0(u),

where gj(u) are polynomials in the variable u of degree j, and the cofactor
becomes

k(u, v) = n.

The infinite equilibrium points for system (3) are on v = 0 and u2(dmu −
an) = 0 that is

v = 0 with u = 0 (double point) or u =
an

dm
(simple point).

We take the double point u = v = 0. Since m < n we have that g(0, 0) = 0.
Moreover the eigenvalues of the Jacobian matrix at that point are

µ = 0, λ = −1.

Since µ = 0, it follows from Theorem 12 (a) that either s = 2 and r = 1
in which case k(0, 0) = λ, or s = 1 and r = 0 in which case k(0, 0) = λ, or
s = 1, r = 1 in which case k(0, 0) = 0. Since k(0, 0) = n we must have either
n = 0 or n = −1 which are both not possible. So, this case is not possible.

Case 2: f = b− (a− e)2/(4d). In this case

f = 1 +
e2n(n−m)

d(m− 2n)2
and b = 1− e2mn

d(m− 2n)2
. (11)

We consider two different subcases.

Subcase 2.1: m = 0. In this case f = 1 + e2/(4d) and b = 1. Imposing that(
ax2 + xy

)∂gn
∂x

+

(
dx2 + exy +

(
1 +

e2

4d

)
y2
)
∂gn
∂y

− nygn = 0,

we get that a = 0.

We recall that system (3) in this case becomes (7) with f = 1 + e2/(4d).
Again, if ξ = 0 then (7) has the invariant straight line x = 1 and so it has
at most one limit cycle. So, from now on we assume ξ ̸= 0.

The terms of degree n of g are gn = xn. Now computing the terms of
degree n−1 and proceeding as in case 1.1 we can write gn−1 = −nxn−1+hn−1

where hn−1 must satisfy (9) with f = 1+ e2/(4d). Note that since f ̸= 1 we
must have e ̸= 0. In this case, setting Ee,f (x, y) = ex+ 2(f − 1)y we have

hn−1 = exp
( ex

(f − 1)Ee,f (x, y)

)(
− 2ξnxn

Ee,f (x, y)
E1/(1−f)

( ex

(f − 1)(Ee,f (x, y)

)
+K(x)(Ee,f (x, y))1/(f−1)

)
,
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where En is the exponential integral function and K(x) is any function in
the variable x. Since ξe ̸= 0, the function hn−1 is never a homogeneous
polynomial of degree n − 1 in the variables x and y and so this case is not
possible.

Case 2.2: m ≥ 1 In this case imposing that(
ax2 + bxy

)∂gn
∂x

+ (dx2 + exy + fy2)
∂gn
∂y

− nygn = 0,

with f and b as in (11), we get that e = a(m − 2n)/m. Note that a ̸= 0
otherwise we would be in the case m = 0.

The terms of degree n of g are gn = xn−m(x − any/(dm))m. Note that
now

b = 1− a2n

dm
, e =

a(m− 2n)

m
and f = 1 +

a2n(n−m)

dm2
. (12)

If we pass to the coordinates [X,Y, Z], the equilibrium points at infinity
have all of them coordinate Y0 ̸= 0 so local coordinates (u, v) with u = X/Y
and v = Z/Y are taken at these points in order to apply Theorem 12.
System (3) with f, b, e as in (12) becomes

u̇ = − 1

dm2
(a2n2u− 2admnu2 + d2m2u3 + dm2v − 2dξm2uv + dm2u2v),

v̇ = − v

dm2
(dm2 − a2mn+ a2n2 + adm2u− 2admnu+ d2m2u2

− dξm2v + dm2uv),
(13)

and

g(u, v) = un−m(u− an/(dm))m + vgn−1(u) + v2gn−2(u) + · · ·+ vng0(u),

where gj(u) are polynomials in the variable u of degree j, and the cofactor
becomes

k(u, v) = n.

The equilibrium points for system (3) are on v = 0 and

u = 0 (single point) or u =
an

dm
(double point).

We take the double point (u, 0) with u = an/(dm). Since m ≥ 1 we have
that g( an

dm , 0) = 0. Moreover the eigenvalues of the Jacobian matrix at that
point are

µ = 0, λ = −1.

Since µ = 0, it follows from Theorem 12 (a) that either s = 2 and r =
1 in which case k(an/(dm), 0) = λ, or s = 1 and r = 0 in which case
k(an/(dm), 0) = λ, or s = 1, r = 1 in which case k(an/(dm), 0) = 0. Since
k(an/(dm), 0) = n we must have either n = 0 or n = −1 which are both not
possible. So, this case is not possible. �

Proof of Theorem 1 for system (3). In view of the proof of Theorem 13, the
unique possible case to have an algebraic limit cycle leads to a system (3)
having at most one limit cycle. This concludes the proof in this case. �
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4. Proof of Theorem 1 for system (4)

The proof of Theorem 1 for system (4) will be an immediate consequence
of the proof of the following theorem.

Theorem 14. Let g = 0 be an invariant algebraic curve of degree n ≥ 5 of
a quadratic polynomial differential system (4). Assume that g = 0 has two
pairs of equilibrium points at infinity. Then there is at most one limit cycle
on g = 0.

Proof. Let g =
(∑m

i=0 gn−i,iy
n−ixi

)
+ · · · with gn−m,m ̸= 0, where the

dots indicate terms of degree n − 1 and lower. The coefficient of the term
yn−mxm+1 in the expression ġ−nyg is equal to am+e(n−m) = 0. Therefore

e =
am

m− n
if m ̸= n, and a = 0 if m = n.

By Propositions 7 and 9 (we are assuming that the line at infinity is
not formed by equilibrium points, otherwise the system cannot have a limit
cycle), we have that

∑m
i=0 gn−i,iy

n−ixi = yn−m(y − y1x)
k(y − y2x)

m−k with
0 ≤ k ≤ m, where y1, y2 are the roots of cy2 + (b− f)y + (a− e) = 0.

We now consider different cases: m = n and m < n.

Case 1: m = n. In this case a = 0. Proceeding as in [23], there are three
reasons for having the condition m = n. First we simply have chosen the
wrong system of coordinates, and there is some other real singular point of
the system at infinity through which g = 0 passes. In that case the system
can be transformed into system (3) with m < n.

The second reason for having m = n is that all the branches of g = 0 go
through non-real equilibrium points of the system at infinity. This means
that y1 = y2 ̸∈ R. In that case system (4) would have only a pair of
equilibrium points at infinity and in view of Theorem 11 it is proved that in
this case the system has at most one limit cycle.

The third reason for having m = n is that c = 0. Then system (4)
becomes

ẋ = −y + bxy, ẏ = x+ exy + fy2.

If b ̸= 0 system (4) has the invariant straight line x = 1/b and in view of
Theorem 2 system (4) has at most one limit cycle. So, b = 0. Moreover, if
f = 0, then either the system has no equilibrium points at infinity (if e ̸= 0)
or the line at infinity is formed by equilibrium points (if e = 0). In both
cases it follows, respectively, from Propositions 8 and 7 that system (4) has
no limit cycles.

In short, b = 0 and f ̸= 0. In this case gn = (y − ex/f)n. Imposing that

(exy + fy2)
∂gn
∂y

− nygn = 0,
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we get

y
(
y − e

f
x
)n−1(e(f + 1)

f
x+ (f − 1)y

)
= 0,

and so

f = 1 and e = 0.

It follows from Theorem 10 (making the change x → y, y → x, t → −t) that
system (4) has at most one limit cycle.

Case 2: m < n. If a = 0 then e = 0 and it follows from Theorem 10 (making
the change x → y and y → x) that system (4) has at most one limit cycle.

We can thus assume that a ̸= 0 and so e = am/(m−n). We consider two
cases.

Subcase 2.1: m = 0. In this case e = 0 and gn = yn. Imposing that

fy2
∂gn
∂y

− nygn = 0,

we get f = 1. Since e = 0 and f = 1, system (4) becomes

ẋ = −y + ax2 + bxy + cy2, ẏ = x+ y2.

The terms of degree n of g are gn = yn. Now we compute the terms of
degree n− 1. In view of Lemma 15 we must solve the equation

(ax2 + (b− 1)xy + cy2)
∂gn−1

∂x
+ nxyn−1 = ygn−1. (14)

We show that gn−1 = yn−2R1 with R1 = a1x+ b1y. Indeed, if we set y = 0
in (14) and denote by ḡn−1 = gn−1(x, 0) we have that

ax2
dḡn−1

dx
= 0,

which means that gn−1 = yRn−2 where Rn−2 is a homogeneous polynomial
of degree n− 2 which satisfies, after simplifying by y,

(ax2 + (b− 1)xy + cy2)
∂Rn−2

∂x
+ nxyn−2 = yRn−2.

Proceeding inductively we get that gn−1 = yn−2R1 with R1 = a1x+ b1y and
R1 satisfies

(ax2 + (b− 1)xy + cy2)a1 + nxy = y(a1x+ b1y).

So equating the terms with x2 we get aa1 = 0. Since a ̸= 0 we must have
a1 = 0. Then nxy = b1y

2 which is not possible. Hence, this case is not
possible.

Subcase 2.2: m ≥ 1 We consider two different subcases c = 0 and c ̸= 0.

Subcase 2.2.1: c = 0. Since there is at most two pairs of singular points at
infinity we must have that either a = e or b = f because the pairs of singular
points at infinity are the endpoints of the straight lines defined by the real
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linear factors of xy((a− e)x+ (b− f)y). Since e = am/(m− n) and a ̸= 0
we must have b = f . Then gn = yn−mxm. Imposing that gn satisfies

(ax2 + bxy)
∂gn
∂x

+
( am

m− n
xy + by2

)∂gn
∂y

= nygn

we get

yn−mxmn(b− 1) = 0.

Therefore b = 1. Then b = f = 1 and system (4) becomes

ẋ = −y + ax2 + xy, ẏ = x+
am

m− n
xy + y2.

Now we compute the terms of degree n− 1. In view of Lemma 15 we must
solve the equation

ax2
∂gn−1

∂x
+

am

m− n
xy

∂gn−1

∂y
−mxm−1yn−m+1

+ (n−m)xm+1yn−m−1 = ygn−1.

(15)

Assume gn−1 is not divisible by y. Then, evaluating (15) on y = 0 and setting
ḡn−1 = ḡn−1(x) = gn−1(x, 0) (must be of the form αxn−1 with α ̸= 0) we
get

ax2
dḡn−1

dx
= aαxn = 0 that is α = 0,

which is not possible. Thus gn−k must be divisible by y. We write it as
gn−1 = yℓhn−1−ℓ for some ℓ > 0, being hn−1−ℓ a homogeneous polynomial
of degree n− 1− ℓ. We consider that ℓ < n−m− 1. Then hn−1−ℓ satisfies,
after simplifying by yℓ

ax2
∂hn−1−ℓ

∂x
+

am

m− n
xy

∂hn−1−ℓ

∂y
−mxm−1yn−m+1−ℓ

+ (n−m)xm+1yn−m−1−ℓ =
(
y + a

ℓm

n−m
x
)
hn−1−ℓ.

Evaluating it on y = 0 and setting h̄n−1−ℓ = hn−1−ℓ(x, 0) = β0x
n−1−ℓ (we

recall that hn−1−ℓ is a homogeneous polynomial of degree n−1−ℓ) we must
have

aβ0(n− 1− ℓ)xn−1−ℓ = aβ0
ℓm

n−m
xn−1−ℓ

that is

aβ0

(
n− 1− ℓ− ℓm

n−m

)
xn−1−ℓ = 0.

Since a ̸= 0 then either β0 = 0 or n − 1 − ℓ − ℓm/(n − m) = 0. That is
n(n−m)− (n−m)− ℓn = 0. Note that since ℓ < n− 1−m we have

n(n−m)− (n−m)− ℓn > n2 − nm− n+m− n2 + n+mn = m ≥ 1.

So β0 = 0. Hence, gn−1 = yn−m−1hm−1.

On the other hand, assume that gn−1 is not divisible by x. Then setting
ĝn−1 = ĝn−1(y) = gn−1(0, y) we get that ĝn−1 ̸= 0 and satisfies (15) eval-
uated on x = 0, that is yĝn−1 = 0, which is not possible. Hence, gn−1 is
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divisible by x. We write it as gn−1 = xℓRℓ with 1 ≤ ℓ < m − 1 and Rℓ a
polynomial of degree n− 1− ℓ not divisible by x and satisfying

ax2
∂Rℓ

∂x
+

am

m− n
xy

∂Rℓ

∂y
−mxm−1−ℓyn−m+1 + (n−m)xm−ℓyn−m−1

= (y − aℓx)Rℓ.
(16)

Setting R̂ℓ = R̂ℓ(y) = Rℓ(0, y), we have that R̂ℓ ̸= 0 and satisfies (16)

restricted to x = 0 that is yR̂ℓ = 0, which is not possible. So gn−1 = xm−1Rℓ.
We have also proved that gn−1 = yn−m−1hm−1. This means that

gn−1 = xm−1yn−m−1Q1 = xm−1yn−m−1(α1x+ α2y),

with α1, α2 satisfying (see (15))

(α2 +m)y2 + (α1 + aα2)xy +
(aα1m+ (m− n)2

m− n

)
x2 = 0.

Solving it we get α2 = −m, α1 = am and a = ±i(m − n)/m that is not
possible because a ∈ R. This completes the proof of Subcase 2.1.

Subcase 2.2.2: c ̸= 0. System (4) becomes

ẋ = −y + ax2 + bxy + cy2,

ẏ = x+
am

m− n
xy + fy2.

(17)

Since there is at most two pairs of singular points at infinity we must have
that

y(ax2 + bxy + cy2)− x
( am

m− n
xy + fy2

)
=

y

m− n
(−anx2 + (b− f)(m− n)xy + c(m− n)y2) = 0

(18)

has a unique double solution. If a = 0 then e = 0 and it follows from
Theorem 10 (making the change x → y, y → x, t → −t) that system (17)
has at most one limit cycle. Then a ̸= 0 and we get that

c =
(b− f)2(n−m)

4an
,

and the unique solutions of (18) are

y = 0 and y =
2an

(f − b)(n−m)
x,

being the second solution a double solution. In this case

gn = yn−m
(
y − 2an

(f − b)(n−m)
x
)m

.

Imposing that gn satisfies

(ax2 + bxy + cy2)
∂gn
∂x

+
( am

m− n
xy + fy2

)∂gn
∂y

− nygn = 0,

we get

1

2
(bm− fm− 2n+ 2fn)yn−m+1

(
y − 2an

(f − b)(n−m)
x
)m

= 0,
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which yields

b =
fm+ 2n− 2fn

m
.

In short, in this case c = (f−1)2n(n−m)/(am2) and b = (fm+2n−2fn)/m.

If we pass to the coordinates [X,Y, Z], the equilibrium points at infinity
have all of them coordinate X0 ̸= 0 so local coordinates (u, v) with u = Y/X
and v = Z/X are taken at these points in order to apply Theorem 12. Then
system (4) with c, e as before becomes

u̇ =
1

am2(m− n)

(
a2m2nu+ am2(m− n)v + 2a(f − 1)m(m− n)nu2

+ (f − 1)2(m− n)2nu3 + am2(m− n)vu2
)

v̇ = − v

am2

(
a2m2 + a(fm− 2fn+ 2n)um− (f − 1)2(m− n)nu2

− auvm2
)
,

(19)

and

g(u, v) = un−m
(
u+

am

(f − 1)(m− n)

)m
+vgn−1(u)+v2gn−2(u)+· · ·+vng0(u),

where gj(u) is a polynomial of degree j, and the cofactor becomes

k(u, v) = nu.

The infinite equilibrium points for system (4) are on v = 0 for system (19)
with coordinates

u = 0 (single point) or u =
am

(f − 1)(n−m)
(double point).

We take the double point (u1, 0) with u1 = (am)/((f − 1)(n − m)). Since
m ≥ 1 we have that g(u1, 0) = 0. Moreover the eigenvalues of the Jacobian
matrix at that point are

µ = 0, λ =
am

(f − 1)(m− n)
.

Since µ = 0, it follows from Theorem 12 (a) that either s = 2 and r = 1 in
which case k(u1, 0) = λ, or s = 1 and r = 0 in which case k(u1, 0) = λ, or s =
1, r = 1 in which case k(u1, 0) = 0. Since k(u1, 0) = (anm)/((f −1)(n−m))
with am ̸= 0 we must have

k(u1, 0) =
anm

(f − 1)(n−m)
= λ =

am

(f − 1)(m− n)
,

which yields n = −1. So, this case is not possible. �

Proof of Theorem 1 for system (4). In view of the proof of Theorem 14, the
unique possible case to have an algebraic limit cycle lead to a system (4)
having at most one limit cycle. This concludes the proof in this case. �
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Appendix: Quadratic systems–Auxiliary result

Lemma 15. Assume that g(x, y) = 0 is an invariant algebraic curve g = 0
of degree n ≥ 5 with cofactor k = ny of system

ẋ′ = β1x+ β2y+ ax2 + bxy+ cy2, ẏ = β3x+ β4y+ dx2 + exy+ fy2 (20)

for some β1, β2, β3, β4 ∈ R. If we write in sum of its homogeneous parts as
g =

∑n
k=0 gk then

(ax2 + (b− 1)xy + c2)
∂gn
∂x

+ (dx2 + exy + (f − 1)y2)
∂gn
∂y

= 0, (21)

and for k = n− 1, . . . , 0,

(β1x+ β2y)
∂gk+1

∂x
+ (ax2 + (b− 1)xy + c2)

∂gk
∂x

+ (β3x+ β4y)
∂gk+1

∂y

+ (dx2 + exy + (f − 1)y2)
∂gk
∂y

= (n− k)ygk.

(22)

Proof. Since g(x, y) = 0 is an invariant algebraic curve g = 0 of degree n ≥ 5
with cofactor k = ny of system (20) it must satisfy

(β1x+β2y+(ax2+bxy+c2)
∂g

∂x
+(β3x+β4y+dx2+exy+fy2)

∂g

∂y
= nyg. (23)

Now we write g =
∑n

j=0 gj where each gj = gj(x, y) is a homogeneous

polynomial of degree j. Then computing the homogeneous parts in (23) we
get

(β1x+ β2y)
∂gj+1

∂x
+ (ax2 + (b− 1)xy + c2)

∂gj
∂x

+ (β3x+ β4y)
∂gj+1

∂y

+ (dx2 + exy + (f − 1)y2)
∂gj
∂y

= nygj .

(24)

with the convention that gn+1 = 0. Since gj must be a homogeneous poly-
nomial of degree j it must satisfy

x
∂gj
∂x

+ y
∂gj
∂y

= jgj (25)

We rewrite (25) as

x
∂gj
∂x

+ y
∂gj
∂y

= ngj + (j − n)gj (26)

Now we multiply (26) by y and we obtain

xy
∂gj
∂x

+ y2
∂gj
∂y

= nygj + (j − n)ygj . (27)

So, introducing from (28) it yields

nygj = xy
∂gj
∂x

+ y2
∂gj
∂y

+ (n− j)ygj . (28)



16 JAUME LLIBRE AND CLAUDIA VALLS

Introducing (28) into (24), we get

(ξx− y)
∂gj+1

∂x
+ (ax2 + bxy)

∂gj
∂x

+ (x− ξy)
∂gj+1

∂y
+ (dx2 + exy + fy2)

∂gj
∂y

(β1x+ β2y)
∂gj+1

∂x
+ (ax2 + (b− 1)xy + c2)

∂gj
∂x

+ (β3x+ β4y)
∂gj+1

∂y

+ (dx2 + exy + (f − 1)y2)
∂gj
∂y

= xy
∂gj
∂x

+ y2
∂gj
∂y

+ (n− j)ygj ,

that is

(β1x+ β2y)
∂gj+1

∂x
+ (ax2 + (b− 1)xy + c2)

∂gj
∂x

+ (β3x+ β4y)
∂gj+1

∂y

+ (dx2 + exy + (f − 1)y2)
∂gj
∂y

= (n− j)ygj .

as we wanted to prove. �
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