CENTERS OF PLANAR GENERALIZED ABEL EQUATIONS

JAUME LLIBRE ${ }^{1}$ AND CLÀUDIA VALLS ${ }^{2}$

Abstract. We deal with the differential equation

$$
\dot{r}=\frac{d r}{d \theta}=a(\theta) r^{n}+b(\theta) r^{m}
$$

where (r, θ) are the polar coordinates in the plane \mathbb{R}^{2}, m and n are integers such that $m>n \geq 2$, and a, b are C^{1} functions. Note that when $n=2$ and $m=3$ we have an Abel differential equation. For this class of generalized Abel equations we characterize a new family of centers.

1. Introduction and statement of the results

Consider the generalized Abel equation

$$
\begin{equation*}
\dot{r}=\frac{d r}{d \theta}=a(\theta) r^{n}+b(\theta) r^{m} \tag{1}
\end{equation*}
$$

defined in the plane $(r, \theta) \in[0,+\infty) \times \mathbb{S}^{1}$ in polar coordinates where $\mathbb{S}^{1}=\mathbb{R} /(2 \pi \mathbb{Z})$. Here m and n are integers such that $m>n \geq 2, \theta \in[-\pi, \pi]$ and a, b are C^{1} functions.

The origin of the plane is a center for the differential equation (1) if there is a neighborhood of it where all the solutions are periodic except the equilibrium point at the origin.

When $n=2$ and $m=3$ the differential equation (1) is a particular family of Abel equations. In fact the Abel equations are of the form

$$
\dot{r}=a(\theta)+b(\theta) r+c(\theta) r^{2}+d(\theta) r^{3}
$$

and they appeared by the first time in the works of Niels Henryk Abel, see [7]. Today there are more than 1400 papers in MathSciNet with the name "Abel equation" in their tittle, see for instance the papers $[1,2,3,5,6,8]$ for results on centers in the Abel equations and the references quoted therein.

The main objective of this work is to provide a new family of centers in the generalized Abel equation (1). Thus, our main result is the following.
Theorem 1. If $a(\theta)$ and $b(\theta)$ are C^{1} odd functions and $m \geq 2 n-1$, then the origin $r=0$ of the differential equation (1) is a center.

The proof of Theorem 1 is given in the next section. We note that Theorem 1 in the particular case $n=2$ and $m=3$, i.e. when equation (1) is an Abel equation, already was obtained in [4] by Araujo, Lemos and Alves.

[^0]
2. Proof of Theorem 1

In order to prove Theorem 1 we introduce some auxiliary results that will be used in its proof.
Proposition 2. The origin $r=0$ of equation (1) is a center if and only if

$$
\begin{equation*}
\int_{-\pi}^{\pi} a(\theta) d \theta=0 \quad \text { and } \quad \int_{-\pi}^{\pi} b(\theta) r(\theta ; \rho)^{m-n} d \theta=0 \tag{2}
\end{equation*}
$$

for $|\rho|<\rho_{0}$ with ρ_{0} sufficiently small where $r(\theta ; \rho)$ is the solution of equation (1) such that $r(-\pi ; \rho)=\rho$.

Proof. First we prove sufficiency. Note that dividing equation (1) by r^{n} and integrating it, we obtain

$$
-\frac{1}{n-1} r^{1-n}(\theta ; \rho)=\int_{-\pi}^{\theta} a(s) d s+\int_{-\pi}^{\theta} b(s) r(s ; \rho)^{m-n} d s-\frac{1}{(n-1) \rho^{n-1}}
$$

where ρ is the initial condition. So we have

$$
r^{n-1}(\theta ; \rho)=\frac{\rho^{n-1}}{1-(n-1) \rho^{n-1}\left[\int_{-\pi}^{\theta} a(s) d s+\int_{-\pi}^{\theta} b(s) r(s ; \rho)^{m-n} d s\right]}
$$

which yields

$$
\begin{equation*}
r(\theta ; \rho)=\frac{\rho}{\left(1-(n-1) \rho^{n-1}\left[\int_{-\pi}^{\theta} a(s) d s+\int_{-\pi}^{\theta} b(s) r(s ; \rho)^{m-n} d s\right]\right)^{\frac{1}{n-1}}} \tag{3}
\end{equation*}
$$

Taking $\theta=\pi$ in the previous equation we have

$$
r(\pi ; \rho)=\frac{\rho}{\left(1-(n-1) \rho^{n-1}\left[\int_{-\pi}^{\pi} a(s) d s+\int_{-\pi}^{\pi} b(s) r(s ; \rho)^{m-n} d s\right]\right)^{\frac{1}{n-1}}}
$$

If (2) holds, then $x(\pi ; \rho)=\rho$, and the sufficiency in the theorem follows.
Assume now that equation (1) has a center on $r=0$. We first note that any solution of equation (1), $r(\theta ; \rho)$ can be expanded in power series in ρ for $|\rho|<\rho_{0}$ with ρ_{0} sufficiently small and $\theta \in[-\pi, \pi]$ in the form

$$
\begin{equation*}
r(\theta ; \rho)=r_{0}(\theta)+r_{1}(\theta) \rho+r_{2}(\theta) \rho^{2}+\ldots \tag{4}
\end{equation*}
$$

Clearly $r_{0}(\theta)=0$ because $r(\theta ; 0)=0$. Substituting (4) into equation (1) we get $\dot{r}_{1}(\theta)=0$ because $n \geq 2$, and since $r(\pi ; \rho)=\rho$ we must have $r_{1}(\theta)=1$. Hence we have

$$
\begin{equation*}
r(\theta ; \rho)=\rho+r_{2}(\theta) \rho^{2}+\ldots \tag{5}
\end{equation*}
$$

Note that a sufficient and necessary condition for $r=0$ to be a center of (1) is that

$$
r_{i}(\pi ; \rho)=0 \quad \text { for } i=2,3, \ldots
$$

Substituting (4) into (1) and computing the coefficients in ρ^{j} for $j \geq 2$ we get that

$$
\dot{r}_{i}(\theta ; \rho)=0 \quad \text { for } i=2, \ldots, n-1
$$

Since $r_{i}(\pi ; \rho)=0$ we must have $r_{i}(\theta ; \rho)=0$ for $i=2, \ldots, n-1$. On the other hand

$$
\dot{r}_{n}(\theta ; \rho)=a(\theta) \quad \text { that is } \quad r_{n}(\theta ; \rho)=\int_{-\pi}^{\theta} a(\theta) d \theta
$$

Since $r_{n}(\pi ; \rho)=0$ we obtain that $\int_{-\pi}^{\pi} a(s) d s=0$. But then, from (3) we readily get that $\int_{-\pi}^{\pi} b(s) r(s ; \rho)^{m-n} d s=0$, which proves the necessity. This concludes the proof of the proposition.

Note that by equation (3) a solution of equation (1) is equivalent to a solution of the integral equation

$$
\begin{equation*}
r(\theta ; \rho)=\frac{\rho}{\left(1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) r(s ; \rho)^{m-n}\right) d s\right)^{\frac{1}{n-1}}} \tag{6}
\end{equation*}
$$

for $\theta \in[-\pi, \pi]$, where $r(-\pi ; \rho)=\rho$. We denote

$$
\begin{equation*}
y(\theta)=r^{n-1}(\theta ; \rho) \quad \text { and } \quad \ell=\frac{m-n}{n-1} . \tag{7}
\end{equation*}
$$

Then equation (6) becomes

$$
\begin{equation*}
y(\theta)=\frac{\rho^{n-1}}{\left(1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s\right.} \tag{8}
\end{equation*}
$$

We define the operator $T: B_{M} \rightarrow C([-\pi, \pi])$ by

$$
T(y)(\theta)=\frac{\rho^{n-1}}{1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s}
$$

for $\theta \in[-\pi, \pi]$, where

$$
B_{M}=\left\{y \in E:\|y\|_{\infty} \leq M\right\}
$$

being E the closed subspace of $C([-\pi, \pi])$ defined by

$$
E=\{y \in C([-\pi, \pi]): y \text { is an even function }\}
$$

Note that if the operator T has a unique fixed point, i.e., a unique $y \in B_{M}$ such that $T(y)(\theta)=y$ then (8) has an even solution. As usual $\|r\|_{\infty}=\max _{\theta \in[-\pi, \pi]}|r(\theta)|$.

We take the notation

$$
J_{\theta}(y)=\frac{\rho^{n-1}}{1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s}
$$

We define

$$
A=\max _{\theta \in[-\pi, \pi]}|a(\theta)|, \quad B=\max _{\theta \in[-\pi, \pi]}|b(\theta)|
$$

Proposition 3. For

$$
\begin{equation*}
0 \leq \rho<\min \left\{\frac{1}{\left(4 \pi(n-1)\left(A+B M^{\ell}\right)\right)^{1 /(n-1)}},\left(\frac{M}{2}\right)^{1 /(n-1)}\right\} \tag{9}
\end{equation*}
$$

the operator $T: B_{M} \rightarrow C([-\pi, \pi])$ is continuous and compact. Moreover $T\left(B_{M}\right) \subset$ B_{M}.

Proof. For each $y_{1}, y_{2} \in C([-\pi, \pi])$, we have

$$
\left|T\left(y_{1}\right)(\theta)-T\left(y_{2}\right)(\theta)\right|=\left|(n-1) J_{\theta}\left(y_{1}\right) J_{\theta}\left(y_{2}\right)\right|\left|\int_{-\pi}^{\theta} b(s)\left(y_{1}(s)^{\ell}-y_{2}(s)^{\ell}\right) d s\right|
$$

for $\theta \in[-\pi, \pi]$. Note that since

$$
0 \leq \rho \leq \frac{1}{\left(4 \pi(n-1)\left(A+B M^{\ell}\right)\right)^{1 /(n-1)}}
$$

we have

$$
\left|(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s\right| \leq 2 \pi(n-1) \rho^{n-1}\left(A+B M^{\ell}\right)<\frac{1}{2}
$$

Therefore

$$
\begin{equation*}
1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s>1 / 2 \tag{10}
\end{equation*}
$$

which yields $J_{\theta}(y) \leq 2 \rho^{n-1}$. Moreover, since $m \geq 2 n-1$ we have that $\ell \geq 1$ and by the Mean Value theorem we get

$$
\left|y_{1}(s)^{\ell}-y_{2}(s)^{\ell}\right| \leq \ell M^{\ell-1}\left\|y_{1}-y_{2}\right\|_{\infty}
$$

Hence

$$
\begin{aligned}
\left|T\left(y_{1}\right)(\theta)-T\left(y_{2}\right)(\theta)\right| & \leq 4(n-1) \rho^{2 n-2} \int_{-\pi}^{\theta}\left|b(s)\left(y_{1}(s)^{\ell}-y_{2}(s)^{\ell}\right)\right| d s \\
& \leq 8 \pi(n-1) \rho^{2 n-2} B \ell M^{\ell-1}\left\|y_{1}-y_{2}\right\|_{\infty}
\end{aligned}
$$

for each $\theta \in[-\pi, \pi]$. So,

$$
\left\|T\left(y_{1}\right)-T\left(y_{2}\right)\right\|_{\infty} \leq 8 \pi(n-1) \rho^{2 n-2} B \ell M^{\ell-1}\left\|y_{1}-y_{2}\right\|_{\infty}
$$

for all $y_{1}, y_{2} \in C([-\pi, \pi])$. Hence the operator T is continuous.
For proving that the operator T is compact, we shall see that T is bounded and equicontinuous. Now we prove that it is bounded. Indeed, by (10) and the condition in ρ in (9) we have

$$
|T(y)(\theta:-\pi)| \leq 2 \rho^{n-1}, \quad \text { for all } y \in B_{M} \text { and } \theta \in[-\pi, \pi]
$$

and so

$$
\begin{equation*}
\|T(y)\|_{\infty} \leq 2 \rho^{n-1} \quad \text { for all } y \in B_{M} \tag{11}
\end{equation*}
$$

proving that the operator T is bounded.
Now we show that T is equicontinuous. For each $\theta_{1}, \theta_{2} \in[-\pi, \pi]$ (that without loss of generality we can assume that $\theta_{2}>\theta_{1}$), and any $y \in B_{M}$, we have

$$
\begin{aligned}
\left|T(y)\left(\theta_{1}\right)-T(y)\left(\theta_{2}\right)\right| & =\left|(n-1) J_{\theta_{1}}(y) J_{\theta_{2}}(y)\right| \times \\
& \left|\int_{-\pi}^{\theta_{1}}\left(a(s)+b(s) y(s)^{\ell}\right) d s-\int_{-\pi}^{\theta_{2}}\left(a(s)+b(s) y(s)^{\ell}\right) d s\right| \\
& \leq 4(n-1) \rho^{2 n-2} \int_{\theta_{1}}^{\theta_{2}}\left|a(s)+b(s) y(s)^{\ell}\right| d s \\
& \leq 4(n-1) \rho^{2 n-2}\left(A+B M^{\ell}\right)\left|\theta_{2}-\theta_{1}\right|
\end{aligned}
$$

Therefore $T\left(B_{M}\right)$ is an equicontinuous subset of $C([-\pi, \pi])$. By Ascoli-Arzela Theorem (see for instance [9]) we have that $T: B_{M} \rightarrow C([-\pi, \pi])$ is compact.

Since the functions $a(\theta)$ and $b(\theta)$ are odd and by assumptions $y(\theta)$ is an even function (and so also $y(\theta)^{\ell}$ is an even function), we have that $a(s)+b(s) y(s)^{\ell}$ is odd. Taking into account that the integral of an odd function is an even function
we conclude that $\int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s$ is an even function in θ. Hence, for each $y \in E$ we have that $T(y)(\theta)=T(y)(-\theta)$ for all $\theta \in[-\pi, \pi]$. Therefore, $T(y) \in E$ for every $y \in E$. Moreover, by (9) and (11) we have that

$$
\|T(y)\|_{\infty} \leq 2 \rho^{n-1}<M \quad \text { for all } y \in B_{M}
$$

So $T: B_{M} \rightarrow B_{M}$ is well defined. This concludes the proof of the proposition.
Proposition 4. Under the assumptions of Theorem 1 there are infinitely many closed even solutions $r(\theta ; \rho)$ of system (1) for ρ satisfying (9).

Proof. It follows from Proposition 3 that the operator $T: B_{M} \rightarrow B_{M}$ is well defined, continuous and compact. By the Schauder fixed point Theorem, see [9], the operator T has a fixed point y satisfying

$$
T(y)(\theta)=y(\theta)=\frac{\rho}{1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) y(s)^{\ell}\right) d s}
$$

and $y(-\pi)=\rho^{n-1}$ for each ρ satisfying (9). From (7) there exists $r(\theta ; \rho)$ such that

$$
r(\theta ; \rho)=\frac{\rho}{\left(1-(n-1) \rho^{n-1} \int_{-\pi}^{\theta}\left(a(s)+b(s) r(s ; \rho)^{m-n}\right) d s\right)^{\frac{1}{n-1}}}
$$

and $r(-\pi ; \rho)=\rho$. Note that $r(-\theta ; \rho)=r(\theta ; \rho)$ and so the solution is closed and even. In short, there are many closed even solutions of system (1) near the origin.

Proof of Theorem 1. To prove Theorem 1 we first show that if $\bar{r}(\theta ; \rho)$ is a solution of equation (1) that satisfies $\bar{r}(-\pi ; \rho)=\rho$ with ρ satisfying (9), then $\bar{r}(\theta ; \rho)$ is closed and even. Indeed, by Proposition 4 there is $r(\theta ; \rho)$ a closed even solution of system (1) such that $r(-\pi ; \rho)=\rho$, and by the uniqueness of solutions of an ordinary differential equation, we obtain that $\bar{r}(\theta ; \rho)=r(\theta ; \rho)$. Hence if a and b are odd functions in the variable θ, then each solution of equation (1) with initial condition ρ satisfying (9) is a closed even solution. Hence, for any ρ satisfying (9) we have

$$
\int_{-\pi}^{\pi} a(s) d s=0 \quad \text { and } \quad \int_{-\pi}^{\pi} b(s) r(s ; \rho)^{m-n} d s=0
$$

Therefore it follows from Proposition 2 that $r=0$ is a center for equation (1).

Acknowledgements

The first author is partially supported by a FEDER-MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and an AGAUR grant number 2014SGR-568. The second author is partially supported by FCT/Portugal through UID/MAT/04459/2013.

References

[1] M.J. Alvarez, J.L. Bravo, M. Fernndez and R. Prohens, Centers and limit cycles for a family of Abel equations, J. Math. Anal. Appl. 453 (2017), 485-501.
[2] M. Briskin, F. Pakovich and Y. Yomdin, Algebraic geometry of the center-focus problem for Abel differential equations, Ergodic Theory Dynam. Systems 36 (2016), 714-744.
[3] A. Brudnyi, Universal curves in the center problem for Abel differential equations, Ergodic Theory Dynam. Systems 36 (2016), 1379-1395.
[4] A.L.A. Araujo, A. Lemos and A.M. Alves, Conditions to the existence of center in planar systems and center for Abel equations, preprint in arXiv:1707.02664v1.
[5] J. Giné, M. Grau and X. Santallusia, The center problem and composition condition for Abel differential equations, Expo. Math. 34 (2016), 210-222.
[6] J. Giné and C. Valls, Nondegenerate centers for Abel polynomial differential equations of second kind, J. Comput. Appl. Math. 321 (2017), 469-477.
[7] C. Houzel, The work of Niels Henryk Abel, The Legacy of Niels Henryk Abel, The Abel Bicentennial, Oslo, 2002.
[8] F. Pakovich, Solution of the parametric center problem for the Abel differential equation, J. Eur. Math. Soc. (JEMS) 19 (2017), 2343-2369.
[9] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1986.

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

2 Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal

E-mail address: cvalls@math.ist.utl.pt

[^0]: 2010 Mathematics Subject Classification. 34C25, 34A34.
 Key words and phrases. Centers, generalized Abel equations.

