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ABSTRACT. We study the global dynamics of the completely inte-
grable Armbruster-Guckenheimer-Kim galactic potential. In these
cases this system has two first integrals H; and Hsy independent
and in involution. Let I, and I, be the set of points of the phase
space on which H; and Hs take the values hy and hs, respectively.
The sets In,n, = In, N1}, are invariant by the dynamics. We char-
acterize the global flow on these sets and we describe the foliation
of the phase space by the invariant sets Ip, p,-

1. INTRODUCTION

The Armsbruster-Guckenheimer-Kim potential is a galactic potential
introduced in [2] that studies the dynamics for the interchanging of
nearly nondegenerate modes with square symmetry. They derived the
model starting with a normal form given by a system of differential
equations which represented the codimension two bifurcation problem.
More precisely, the Hamiltonian function that they provided is

1 2,2

1 a b
H(x>pxay7py) = 5(}7325 +p§) + 5(%2 -+ y2) — Z(l‘Q —|—y2)2 — 51- Y,

where a, b are arbitrary constants. If we add the term —w(zp, — yp.)
then the system describes the dynamics of rotation of a nearly ax-
isymetric galaxy rotating with a constant velocity w around a fixed
axis. The existence of such w denotes that the rotation of the galaxy
must be taken into account when we study the stellar orbits (see [8]).
Many studies concerning the integrability and non-integrability of such
systems have been done (see for instance [1, 4, 5]) using different tech-
niques such as the Painlevé analysis and the Morales-Ramis theory as
well as the study of the existence of periodic orbits which was done in
[7]. In particular, it was proved in [5] that if b = 2a or b = —a the
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system is completely integrable but the authors do not describe com-
pletely the dynamics of the integrable systems form the point of view
of the Liouville-Arnold theorem (see section 2). This is the main aim
of this paper.

When b = 2a the Hamiltonian has the form
a

4(.’13‘2 4 y2>2 _ ax2y2.

1 1
H =50 +1,) + 5= +v7)
Introducing the new variables

L w—y), v —=(e+y) (2= py), Do = —= (e 1)
U= —=(Tr — ”U:—,ZL' 5 v — T = T = ) v — T = xT )

it can be written as

1 a
H(z,ps, Y, Dy) =§(pi +p)) + 1

:gl(m7px) + ]:I2<y7py>7

where a € R, we have renamed the variables (u,v) again as (z,y) and

1
(z' +y*) — 5(932 + 97

Hi(z,p,) = %pi + %x“ - %xz} Hy(y,py) = %pf, + %y“ — %yQ-
Note that H;: R? — R while H: R* — R. In all the paper we will de-
note by H the Hamiltonian associated to a system with two degrees of
freedom and so H = H(z,ps,y,p,): R* = R, H; = Hi(z,p.,y,p,): R* =
R fori=1,...,4, and we will denote by H the Hamiltonian associated
to a system with one degree of freedom and so H; = ﬁ[l(x, pe): RZ =R

and Hy = ﬁQ(y,py): R? — R.

We observe thta H; and H, are two first integrals, independent and
in involution. Hence, the Hamiltonian system associated to the Hamil-
tonian H is

(1) T = Pz, y = Dy pz = _CLIB + T, ].?y = _ayB +y

and it is completely integrable. We recall that H; and H, are indepen-
dent if the matrix

Hy, Hy,, Hyy Hyp,
Hy, Hyy,, Hyy Hoyp,

has rank 2 in any point of R* except, perhaps in a zero Lebesgue-
measure set. Asusual H;, = 0H;/0y. Moreover, we say that H; and Ho
are in involution if their Poisson bracket is zero. Finally, a Hamiltonian
system with two degrees of freedom is completely integrable if it has two
independent first integrals in involution.
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Note that the phase space of system (1) is R*. Since H; and H, are
fist integrals the sets

I, ={(z,ps,y,py) € R*: H, = hi} =A{(x,p.) € R?: H, = l~11} x R?

:[ﬁl X Rz,
Ih2 :{(xapLE?pry) € R4 : H2 = h2} = {<y7py) € R2 : ﬁ2 = ;LQ} X R2
=R? x I,
as well as

Ih1h2 = {(xapx7yvpy) € R4 cHy = hlaHQ = h2}
= {(map:myvpy) € R4 . Hl = hl} N {($apx7yapy) € ]R4 . H2 = hQ}
= Ip, N1y, = (I, x R?) N (R* x I;)
= Iﬁl X [ﬁg
are invariant by the flow of the Hamiltonian system (1). The first
objective of this paper is to describe the foliations of the phase space
R* by the invariant sets I, for i = 1,2 as well as by I},,5,. The foliations

provide a good description of the phase portraits of the Hamiltonian
flow (1) when a varies.

When b = —a the Hamiltonian has the form

1 a 1
H(z,ps,y,py) =§(pi +p;) — Z(x4 +yt) + 5(91:2 + 1)

:.f{?,(l’,px) + H4<y7py>7

where a € R with

it 1 a 1 ~ 1 a 1
Hy(z,ps) = épi - Zfl + §$2, Hy(y,py) = 5]95 - Zy4 + §y2.

Note that H; and H, are two first integrals, independent and in
involution. Hence the Hamiltonian system

(2) P=p., Y=py Pa=ari—z, p,=ay’—y

is completely integrable. The sets
Iy ={(2,p2,y,py) €R': Hy = hg} = I; x R?,
Iny ={(2,p0,y,py) € R* : Hy = hy} =R* x I,
as well as
Inghy = {(@, 00,9, py) € R s Hy = g, Hy = ha} = In, 0 Iy, = I, x I,

are invariant by the flow of the Hamiltonian system (2). The second
main objective of the paper is to describe the foliations of R* by the
invariant sets I, for ¢ = 3,4 and by the invariant sets I;,5,. Again,
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these foliations provide a good description of the phase portraits of the
Hamiltonian flow (2) when a varies.

The paper is organized as follows. In section 2 we recall the Liouville-
Arnold theory for Hamiltonians systems with two degrees of freedom.
In section 3 we describe the topology of the sets I, (since the study
for I, is analogous). For doing that and taking into account that
Iy, = 1j, X R? we will only describe the topology of the sets I;, by

computing the sets of singular points and critical values for H, and the
Hill regions according to the different values of a and h;. In section 4
we study the topology of the sets Ij,p,. In section 5 we describe the
topology of the sets I, (again because the study for I, is analogous)
and recalling that Iy, = Ij, X R? we will only describe the topology of
the sets I, by computing the sets of singular points and critical values

for H; and the Hill regions according to the different values of a and
hs. In section 6 we study the topology of the sets Ij.p,.

2. INTEGRABLE HAMILTONIAN SYSTEMS

In this section we recall the Liouville-Arnold theorem for the inte-
grable Hamiltonian systems with two degrees of freedom. We recall
that a flow defined on the phase space R* is complete if its solutions
are defined for all time ¢ in R.

Theorem 1. The Hamiltonian system (1) (resp. system (2)) defined
on the phase space R* has the Hamiltonians Hy and Hy (resp. Hs and
Hy) as two independent first integrals in involution. If I, n, # O (resp.
Ingn, # 0) and (hy, ha) (resp. (hs, hy)) is a reqular value of the map
(Hy, Hy) (resp. (Hs, Hy)) then the following statements hold.

(&) Inny (resp. Ingn,) is a two-dimensional submanifold of R* in-
variant under the flow of system (1) (resp. system (2)).

(b) If the flow on a connected component Iy . (resp. Iy, ) of Inn,
(resp. Ingn,) is complete, then Iy, (resp. I}, ) is diffeomor-
phic either to the torus S' x S!, to the cylinder S' x R, or to
the plane R?

(c) Under the assumption of statement (b), the flow on Iy, (resp.
on Iy, ) is conjugated to a linear flow either on St xSt or on
St x R, or on R2.

Note that Theorem 1 does not provide information on the topology
of the invariant sets Iy, n, (resp. Ip,n,) when (hihs) (resp. (hshy)) is
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not a regular value of the map (Hy, Hy) (resp. (Hs, Hy)), or how the
energy levels I, or I, (resp. I, or I,) foliate R*.

In this paper we solve these problems for systems (1) and (2).

3. THE TOPOLOGY OF THE INVARIANT SETS [,

As explained in the introduction, taking into account that I,, =
I, x R* we will restrict all the study to Ij, .

A point (z,p,) € R? is a singular point for the map Hy if it is a
solution of ~ ~
0H H
L -, om _,,
IPa

Ox

The value ;Ll € R is a critical value for the map H 1 if there is some
singular point belonging to Hy *(hy) = I . If hy is not critical value it
is said a regular value. Tt is well-known that if k; is a regular value of
the map [, then I 7, is a one-dimensional manifold (see [6]).

Note that the singular points for the map H; are
pe =0, x(az?—1)=0,

and so the set of singular points of Hj is (0,0) if « < 0, and (0,0) U
(0,—1/y/a)U(0,1/y/a) if a > 0.

We define the Hill region as

2
. (1, 4 LU g
R;M:{l'E]Rz.T —Eghl}

This is the region of the configuration space {z € R} where the motion
of all orbits of the Hamiltonian system associated to H; having energy
hy takes place. By R; =~ S, we denote that Rj, is diffeomorphic to S.
We will also denote by

. \/1—\/14—4@711 . \/1+\/1+4aﬁ1
7: +:
a

)
a

have:

(i) Ry, #Rifa=0and hy >0,
(ii) R;, ~ R but here {0}, which is a singular point for Hy, is in
the boundary of the Hill region, if a = 0 and hy =0,
(iii) R;, A~ (—00, —v/—2hi] U[V/—2h;,00) if a = 0 and 7y <0,
(iv) R;, =R ifa <0 and hy >0,
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(v) R, =~ R but here {0}, which is a singular point for Hy, is in
the boundary of the Hill region, if a < 0 and hy =0,
(vi) Rj, ~ (—00,—=P_JU[P_,00)if a <0 and hy <0,
(vii) R ~ 0 if a >0 and hy < —1/(4a),

(viil) Rj =~ {—\/g} U {\/g} which are two of the singular points for
the map Hy, if > 0 and by = —1/(4a), )
(ix) Ry, ~ [Py, —P_JU[P_, P],if a >0 and hy € (—1/(4a),0) ,

(x) Ry, =~ [~ \/%, \/g] but here {0}, which is a singular point for
Hy, is in the boundary of the Hill region, if @ > 0 and hy =0,
(Xl) Rill ~ [—P+,P+] lfa > O and h]_ > 0

Now we compute the energy levels I . From the definition of I;, we
have

(3) L=U E

$€R,’Ll

where

Clearly for each x € R the set E, is either two points, or one point or
the emptyset, if the point z is in the interior of the Hill region Rj ,
in its boundary, or it does not belong to Ry, , respectively. Therefore,
from (3) and using the Hill region, the topology of I; is:

(i) I;, ~RURifa <0 and y # 0,
(ii) I, = X ifa <0 and hy = 0. Here X denotes two straight lines
intersecting the origin of the two straight lines,
(iii) I, =0 if a > 0 and hy < —1/(4a),
(iv) I, ~ (:I:\/g, 0) which are the two equilibrium points of H, if

a>0and hy = —1/(4a), )
(v) I;, =S'US"if a > 0 and hy € (—1/(4a),0),
(vi) I, ~ o0 if a > 0 and hy = 0. Here co denotes two homoclinic

orbits at the origin.
(vii) I; ~S'ifa>0and hy <0.

See in Figure 1 the phase portraits associated to the Hamiltonian
system with Hamiltonian H; depending on whether a > 0, a = 0, and
a < 0. The phase portraits in Figure 1 are drawn in the Poincaré
disc, which essentially is a unit closed disc centered at the origin of
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coordinates with its interior identified to R? and with its boundary
(the circle S') identified with the infinity of R?, for more details on the

Poincaré disc see Chapter 5 of [3].

(a) a>0 (b) a=0 (¢)a<0

FIGURE 1. Phase portraits associated to the Hamilton-
ian system with Hamiltonian H; depending on whether
a>0,a=0anda<0.

4. THE TOPOLOGY OF THE INVARIANT SETS [,

To obtain I, we recall that I, is exactly the same as Ij,, and that
Ihiny, = Iny NIy, = I x Ij, . Hence, in Table 1 we have given the
description of the invariant sets Ij,5, for the different values of hy, ho
and a

5. THE TOPOLOGY OF THE INVARIANT SETS [,

As we did for the case Hy, we recall that [, = I hy X R? and so we
will study only [; . The singular points for the map H; satisfy
pe =0, z(1—az?) =0
and so they are (0,0) if @ < 0 and (0,0) U (0, —1/4/a) U (0,1/y/a) if
a > 0. The Hill region is

2
R

and so taking the notation

0 _\/1—\/1—4@713 0 _\/1+\/1—4a133
= . Q=
a

a

we have

(i) Rﬁgzﬂifa:OandiL3<O,
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a hl h2 Ih1h2
<0 # 0 ;AO (RUR) x (RUR)
<0 Z0 RUR) x X
<0 = = 0 X x (RUR)
<0 - =0 X x X
>0 < —1/(4a) €R @
S0 =-1/(da) | < -1/(4a)
S>0| =-1/(4a) | =—1/(4a) \[ 0) x \f
0| =-1/(4a) | € (~1/(4a),0) ( \[ 0) x (Sl ush
>0| =-1/(4a) —0 1 0)
> 0| =—1/(4a) <0 \[0 x !
>0 €(-1/(1a),0)| < —1/(4a)
> 0| e (=1/(4a),0)| =—1/(4a) | (S'USYH ><( V5 0)
>0 €(—1/(4a),0) | € (—1/(4a),0) | (S'US") x (STUST
>0 € (~1/(4a),0) =0 STUS) x 0o
>0|€(-1/(4a),0) <0 (STUSH) x St
>0 =0 < —1/(da) 0
>0 —0 — —1/(4a) 00 X (i\/g,())
> 0 =0 € (—1/(4a),0) oo x (STUS!)
>0 =0 =0 50 X 00
>0 =0 <0 oo x St
>0 <0 < —1/(4a) 0
>0 <0 — —1/(4a) S' x (44/1,0)
>0 <0 € (—1/(4a),0) ST x (STUST)
>0 <0 =0 ST x oo
>0 <0 <0 St x St

TABLE 1. The invariant sets Iy, , for the different values
of hq, hy and a

{O} if a = 0 and hs = 0,then

—/ 2h3, Vi 2h3 | if a =0 and hs > 0 then
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vii) R;. ~ R, but here {#4/%}, which are singular points for H,
h3 a
are in the boundary of the Hill region, if @ > 0 and hs = 1/(4a),
(ix) Ry, = (=00, —-Q4]U[-Q_,Q_]U[Q,+00) if a > 0 and h3 €
(0.1/(4a), ]
(x) Rj, =~ R, but here {0}, which is a singular point for H, is in
the boundary of the Hill region, if a > 0 and }:lg =0,
(xi) Ry, = (— 00, Q4] U[Q4,+00) if a > 0 and hs < 0.

Now we compute the energy levels I . From the definition of I}, we
have

(4) ]ils - UyERﬁg Ey
where )
p a 1 ~
E, = {(?J»py) eR*: Ey - Z?fl + §y2 = h3}-

Clearly for each y € R the set E, is either two points, or one point
or the emptyset, if the point y is in the interior of the Hill region R;_,
in its boundary, or it does not belong to Rj,_, respectively. Therefore,
from (4) and using the Hill region, the topology of I is:

(i) I, 0 if a < 0 and hy < 0,
(i) I, =~ {(0,0)} if @ < 0 and h3 =0,
(iii) I, ~S' a <0 and hg > 0,
(iv) I;, = RUR if a > 0 and hz > 1/(4a),
(v) I;, = Pif a > 0 and h3 = 1/(4a). Here P denotes two curves
with the shape of a parabola intersecting in two different points
(the points are the two singular points),
(vi) I;, ~ RUS'UR if a > 0 and hy € (0,1/(4a)),
(vii) I;, ~ RU{(0,0)} UR if @ > 0 and h3 = 0,
(viii) I;, * RUR if a > 0 and h3 < 0.

See the phase portrait associated to H depending on whether a > 0,
a=20,o0ra<0.

See in Figure 2 the phase portraits associated to the Hamiltonian
system with Hamiltonian H3 depending on whether a > 0 and a < 0.

6. THE TOPOLOGY OF THE INVARIANT SETS Ip,p,

To obtain I,, we recall that I, is exactly the same as Ij,, and that
Ihshy = Ing N In, = Iy, x Ij,. Hence, in Table 2 we have given the
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9©

(b) a <0

FIGURE 2. Phase portraits associated to the Hamilton-
ian system with Hamiltonian Hj3 depending on whether
a>0ora<Qo.

description of the invariant sets Ij,;, for the different values of hg, hy
and a.
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