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Abstract. In this paper we deal with Abel equations dy/dx = A(x)y2+
B(x)y3, where A(x) and B(x) are real polynomials. We prove that
these Abel equations can have at most three rational limit cycles and
we characterize when this happens. Moreover, we provide examples of
these Abel equations with three nontrivial rational limit cycles. We also
prove that in this case the limit cycles cannot be hyperbolic.

1. Introduction and statement of the results

We study the Abel equations

(1)
dy

dx
= A(x)y2 +B(x)y3,

where x, y are real variables and A(x) and B(x) are polynomials. The limit
cycles of these equations have been intensively investigated mainly when the
functions A(x) and B(x) are periodic (see for instance [1, 2, 3, 4, 5, 6, 7, 9,
12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24]), and also when A(x) and B(x) are
polynomial (see for instance [8, 10, 11, 14, 20]). Here we are interested in
the rational limit cycles of equation (1) when the functions A(x) and B(x)
are polynomial.

A periodic solution of equation (1) is a solution y(x) defined in the closed
interval [0, 1] such that y(0) = y(1).

We say that a limit cycle is a periodic solution isolated in the set of
periodic solutions of a differential equation (1). Without loss of generality
we will assume that the period is 1.

The limit cycle is called a polynomial limit cycle if the periodic solution
y(x) is a polynomial in the variable x. In particular the authors of [14]
proved that any polynomial limit cycle of system (1) is of the form y = c
with c ∈ R, and that if a polynomial limit cycle exists with c 6= 0, then no
other polynomial limit cycles can exist.

In this paper we want to consider the existence of rational limit cycles for
system (1), i.e. we want to consider limit cycles of the form y(x) = q(x)/p(x)
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where p, q ∈ R[x] and (p(x), q(x)) = 1. As usual R[x] denotes the set
of all real polynomials in the variable x. We will study only the rational
limit cycles that are not polynomial limit cycles. In this scenario we will
distinguish between trivial limit cycles (the polynomial ones) and non-trivial
limit cycles (the rational limit cycles that are not polynomials).

In [17] the authors provide examples of differential equations (1) having
one or two rational limit cycles, and that these limit cycles are hyperbolic.

Our main theorem is the following one.

Theorem 1. System (1) has at most three rational limit cycles, and when
it has three rational limit cycles 1/yi(x) for i = 1, 2, 3, then there exist
a polynomial S(x) and two different constants c1, c2 ∈ R \ {0} such that
S(0) = S(1) and S(x) 6= 0, S(x) + c1 6= 0 and S(x) + c2 6= 0 for x ∈ [0, 1].
Moreover

(2) B(x) = S(x)S′(x)(S(x) + c1)(S(x) + c2),

and the three limit cycles and satisfy

y1(x) = S(x)(S(x) + c1),

y2(x) = S(x)(S(x) + c2),

y3(x) = (S(x) + c1)(S(x) + c2).

(3)

We provide an example of system (1) with three rational limit cycles. The
proof of Theorem 1 and the example are given in section 2.

Denote by y(x, x0) the solution of equation (1) such that y(0, x0) = x0.
Clearly a zero of the function φ(x0) = y(1, x0)−x0 implies that y(x, x0) is a
periodic solution of (1), and an isolated zero of φ(x0) implies that y(x, x0)
is a limit cycle of system (1). When we have a simple isolated zero of φ(x0),
i.e. φ(x0) = 0 and φ′(x0) 6= 0, then we say that y(x, x0) is a hyperbolic limit
cycle.

Theorem 2. When system (1) has three limit cycles, they are not hyper-
bolic.

Theorem 2 is proved in section 3.

2. Proof of Theorem 1

It was proved in Lemma 2 of [17] the following result, but for completeness
we provide it here.

Lemma 3. The rational function y = q(x)/p(x) with p(x) non-constant is a
periodic solution of system (1) if and only if q(x) = c ∈ R \ {0}, p(0) = p(1)
and p(x) has no zero in [0, 1] and

(4) cB(x) +
p(x)p′(x)

c
+ p(x)A(x) = 0.
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Proof. For the reverse implication, we note that if q(x) = c ∈ R \ {0},
p(0) = p(1), p(x) has no zero in [0, 1] and equality (4) holds then it is clear
that the rational function y = c/p(x) is a periodic solution of system (1).

For the direct implication, we note that if y(x) = q(x)/p(x) is a periodic
solution of system (1) then p(x) 6= 0 for x ∈ [0, 1]. Let g(x, y) = p(x)y−q(x).
Then

0 =
dg(x, y)

dx
|g(x,y)=0 = p′(x)y + p(x)

dy

dx
− q′(x)

= p′(x)y + p(x)(A(x)y2 +B(x)y3)− q′(x).

Note that g(x, y) is irreducible, so there exists a polynomial k(x, y) so that

(5) p′(x)y + p(x)(A(x)y2 +B(x)y3)− q′(x) = k(x, y)g(x, y).

Since the highest degree in y in the left-hand side is 3 and the highest degree
in y in g(x, y) is 1 we get that the highest degree in y in k(x, y) is 2 and so it
can be written as k(x, y) = k0(x)+k1(x)y+k2(x)y2, where k0, k1, k2 ∈ R[x].
Comparing the coefficients of y0, y1, y2 and y3 in (5) we get

q′(x) = k0(x)q(x),

p′(x) = k0(x)p(x)− k1(x)q(x),

p(x)A(x) = k1(x)p(x)− k2(x)q(x),

p(x)B(x) = k2(x)p(x).

(6)

From the first relation we get that q(x)|q′(x). This implies that q(x) is
a constant that we denote by c, that is, q(x) = c ∈ R. If c = 0 then
y = q(x)/p(x) = 0. This is not possible and so c 6= 0. Moreover, y =
q(x)/p(x) = c/p(x) is a periodic solution, then p(0) = p(1). From the
second relation we get that k1(x) = −p′(x)/c and from the fourth relation
we obtain k2(x) = B(x). Substituting them in the third relation we get (4)
and the direct inclusion is proved. �

In view of Lemma 3 it is not restrictive to take c = 1 and consider all
rational limit cycles of the form y = 1/p(x) with p(x) satisfying p(0) = p(1)
with p(x) having no zero in [0, 1] and satisfying (4).

From (4) we must have that B(x) is multiple of p(x) and so B(x) =
p(x)r(x) for some polynomial r(x). Therefore, (4) becomes

(7) r(x)+p′(x)+A(x) = 0 and so p(x) = κ−
∫

(A(s)+r(s)) ds, κ ∈ R.

Assume that equation (1) has two rational limit cycles, y(x) = 1/p1(x)
and y(x) = 1/p2(x) with p1(x), p2(x) ∈ R[x] \ R. Denote by q(x) =
(p1(x), p2(x)), i.e. the maximum common divisor of the polynomials p1(x)
and p2(x), and consequently

(8) p1(x) = q(x)s1(x), p2(x) = q(x)s2(x)



4 J. LLIBRE AND C. VALLS

with q(x), si(x) ∈ R[x] and (s1(x), s2(x)) = 1. Note that in view of the
above observation we must have that

(9) B(x) = q(x)s1(x)s2(x)s3(x)

for some s3(x) ∈ R[x].

Lemma 4. The following equalities hold

(10) s3(x) = q′(x) and s1(x)− s2(x) = c ∈ R.

Proof. Note that in view of (7) we have

q(x)s1(x) = κ0 −
∫

(A(s) + s2(s)s3(s)) ds,

q(x)s2(x) = κ1 −
∫

(A(s) + s1(s)s3(s)) ds,

(11)

with κ0, κ1 ∈ R. Hence,

q′(x)s1(x) + q(x)s′1(x) = −A(x)− s2(x)s3(x),

q′(x)s2(x) + q(x)s′2(x) = −A(x)− s1(x)s3(x),

and so

q′(x)s1(x) + q(x)s′1(x)− q′(x)s2(x) + q(x)s′2(x))

= −s2(x)s3(x) + s1(x)s3(x) = (s1(x)− s2(x))s3(x),

which gives

q′(x)(s1(x)− s2(x)) + q(x)(s1(x)− s2(x))′ = (s1(x)− s2(x))s3(x),

that is

q(x)(s1(x)− s2(x))′ = (s1(x)− s2(x))(s3(x)− q′(x)).

Hence
(s1(x)− s2(x))′

(s1(x)− s2(x))
=
s3(x)

q(x)
− q′(x)

q(x)
.

Therefore

(12) s1(x)− s2(x) = κ2
1

q(x)
exp

(∫
s2(s)

q(s)
ds

)
,

for some κ2 ∈ R. Since s1(x) − s2(x) must be a polynomial we must have
s3(x) = κ3q

′(x) for some κ3 ∈ R. Indeed note that we must have

(13)

∫
s3(s)

q(s)
ds = κ3 log h(x), κ3 ∈ R, h(x) ∈ R[x] \ {0}.

Let H(x) = (q(x), s3(x)). Then

s3(x)

q(x)
=
H(x)s̄3(x)

H(x)q̄(x)
=
s̄3(x)

q̄(x)
= κ3

h′(x)

h(x)
.
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Therefore q̄(x) = h(x) and s̄3(x) = κ3q̄
′(x). So q(x) = H(x)h(x). From (12)

and (13) we have

s1(x)− s2(x) = κ2
1

q(x)

(
q(x)

H(x)

)κ3
.

Since s1(x)− s2(x) must be a polynomial and κ3 6= 0, it follows that H(x)
can be one. Hence,

(14) s3(x) = κ3q
′(x) and s1(x)− s2(x) = κ2q(x)κ3−1.

On the other hand, doing a change of variables of the form Y = βy where
β2 = sign(κ3)κ3, the Abel equation (1) becomes

(15)
dY

dx
=
A(x)

β
Y 2 +

B(x)

β2
Y 3 = A(x)Y 2 +B(x)Y 3.

Since B(x) = q(x)s1(x)s2(x)κ3q
′(x), then B(x) = ±q(x)s1(x)s2(x)q′(x). In

what follows we shall work with the Abel equation (15).

Repeating the previous computations starting with the Abel equation (15)
we will arrive to equation (14) which now writes

s3(x) = q′(x) and s1(x)− s2(x) = κ2,

because κ3 = ±1 and only can be one. This concludes the proof of the
lemma. �

Note that from (8), (9) and Lemma 4 we have that

(16) B(x) = q(x)q′(x)s1(x)s2(x).

Proof of Theorem 1. Assume that equation (1) has three rational limit cy-
cles, y = 1/p1(x) and y = 1/p2(x) and y3 = 1/p3(x) with p1, p2, p3 ∈
R[x] \ R. Denote by q1(x) = (p1(x), p2(x)), q2(x) = (p1(x), p3(x)) and
q3(x) = (p2(x), p3(x)). In view of Lemma 4 we have

p1(x) = q1(x)s1(x) = q2(x)s2(x),

p2(x) = q1(x)(s1(x) + c1) = q3(x)s3(x),

p3(x) = q2(x)(s2(x) + c2) = q3(x)(s3(x) + c3),

(17)

for some polynomials s1(x), s2(x), s3(x) and constants c1, c2, c3 ∈ R \ {0}.
Hence, we get

p2(x)− p1(x) = q1(x)c1, c1 ∈ R,
p3(x)− p1(x) = q2(x)c2, c2 ∈ R,
p3(x)− p2(x) = q3(x)c3, c3 ∈ R,

and so

(18) q2(x)c2 = q1(x)c1 + q3(x)c3.

We consider two situations.
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Case 1: q1(x) and s2(x) are coprime. Note that from (17) we have that
q1(x)s1(x) = q2(x)s2(x), and then from (18) we get

q1(x)s1(x)c2
s2(x)

= q2(x)c2 = q1(x)c1 + q3(x)c3.

In particular there exists T (x) ∈ R[x] so that

q3(x) = q1(x)T (x),

and consequently
s1(x)c2
s2(x)

= c1 + T (x)c3,

which yields

s1(x) =
s2(x)

c2
(c1 + T (x)c3).

Therefore from (17) we get

q2(x)s2(x) = q1(x)s1(x) = q1(x)
s2(x)

c2
(c1 + T (x)c3),

and so

q2(x) = q1(x)
c1 + T (x)c3

c2
.

Hence we have

p1(x) = q1(x)s1(x) = q1(x)
s2(x)

c2
(c1 + T (x)c3),

p2(x) = q1(x)(s1(x) + c1) = q1(x)

(
s2(x)

c2
(c1 + T (x)c3) + c1

)
,

p3(x) = q2(x)(s2(x) + c2) = q1(x)
c1 + T (x)c3

c2
(s2(x) + c2).

(19)

We consider two subcases.

Subcase 1.1: Assume that T (x) and s2(x) + c2 are coprime. Then the
maximum common divisor between p2(x) and p3(x) is q1(x). Indeed, we
will show that

r1(x) =
s2(x)

c2
(c1 + T (x)c3) + c1

and

r2(x) = (c1 + T (x)c3)(s2(x) + c2)

are coprime. Note that if x∗ is a zero of c1 + T (x)c3 then we have that
r2(x

∗) = 0 but r1(x
∗) = c1 6= 0. Moreover, if x̂ is a solution of s2(x)+c2 = 0

then r2(x̂) = 0 but r1(x̂) = −(c1 + T (x̂)c3) + c1 = T (x̂)c3 6= 0. Therefore,
using p1(x) and p2(x) from (16) and (19) we can write

B(x) = q1(x)q′1(x)
s2(x)

c2
(c1 + T (x)c3)

(
s2(x)

c2
(c1 + T (x)c3) + c1

)
,
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and from p1(x) and p3(X) we can write

B(x) = q1(x)q′1(x)

(
s2(x)

c2
(c1 + T (x)c3) + c1

)
c1 + T (x)c3

c2
(s2(x) + c2),

and so

s2(x) = s2(x) + c2

which is not possible because c2 6= 0.

Subcase 1.2: Assume that T (x) and s2(x) + c2 are not coprime. Write

T (x) = α1(x)α2(x), s2(x) + c2 = α1(x)α3(x),

where α2, α3 ∈ R[x] and α1(x) ∈ R[x] \ R. Then

p3(x) = q1(x)α1(x)α3(x)
c1 + T (x)c3

c2
,

p2(x) = q1(x)
α1(x)

c2
(c1α3(x) + s2(x)α2(x)c3).

We first note that the maximum common divisor between p2(x) and p3(x)
is q1(x)α1(x). To do so, we will show that

r3(x) = α3(x)(c1 + T (x)c3) and r4(x) = c1α3(x) + s2(x)α2(x)c3

are coprime. If x∗ is a zero of α3(x) then r3(x
∗) = 0 but r4(x

∗) = s2(x
∗)α2(x

∗)c3 =
−c2α2(x

∗)c3. Since α2(x) and α3(x) are coprime, we get that α2(x
∗) 6= 0,

and then r4(x
∗) 6= 0. Moreover, if c1 + T (x̂)c3 = 0 then r4(x̂) = c1 6= 0. So

r3(x) and r4(x) are coprime.

From p1(x), p2(x), (16) and (19) we get

(20) B(x) = q1(x)q′1(x)
s2(x)

c2
(c1 + T (x)c3)

α1(x)

c2
(c1α3(x) + s2(x)α2(x)c3).

Note that from p2(x), p3(x), (16) and (19) we have
(21)

B(x) =
q1(x)

c22
α1(x)(q1(x)α1(x))′α3(x)(c1+T (x)c3)(c1α3(x)+s2(x)α2(x)c3).

Comparing (20) with (21) we obtain

α3(x)(q1(x)α1(x))′ = q′1(x)(α1(x)α3(x)− c2),
i.e.

−c2q′1(x) = −α3(x)q1(x)α′1(x),

which is not possible unless either α3(x) = 0 or α′1(x) = 0, but then q1(x)
would be constant, a contradiction. In short, Case 1 is not possible.

Case 2: q1(x) and s2(x) are not coprime We write

q1(x) = R1(x)R2(x), s2(x) = R1(x)R3(x)

with R1(x), R2(x), R3(x) ∈ R[x] and R1(x) 6∈ R.
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We consider two different subcases.

Subcase 2.1: R3(x) = R ∈ R. So s2(x) = R1(x)R and q1(x) = R2(x)s2(x)/R.

We also consider two cases

2.1.1: R2(x) = R2 ∈ R. From (8) we have q1(x)s1(x) = q2(x)s2(x) and
so q2(x) = R2s1(x)/R.Then

p1(x) =
R2

R
s1(x)s2(x),

p2(x) =
R2

R
s2(x)(s1(x) + c1),

p3(x) =
R2

R
s1(x)(s2(x) + c2).

From p1(x), p2(x), (16) and (19) we get

B(x) =
(R2

R

)2
s2(x)s1(x)(s1(x) + c1)s

′
2(x),

and from p1(x), p3(x), (16) and (19) we obtain

B(x) =
(R2

R

)2
s2(x)s1(x)s′1(x)(s2(x) + c2),

and so
s′2(x)(s1(x) + c1) = s′1(x)(s2(x) + c2),

which yields
s′2(x)

s2(x) + c2
=

s′1(x)

s1(x) + c1
and integrating

log(s2(x) + c2) = κ+ log(s1(x) + c1), κ ∈ R
and so

s2(x) + c2 = κ1(s1(x) + c1), κ1 = eκ ∈ R+.

Hence

p1(x) =
R2

R
s1(x)(κ1(s1(x) + c1)− c2),

p2(x) =
R2

R
(κ1(s1(x) + c1)− c2)(s1(x) + c1),

p3(x) =
R2

R
s1(x)κ1(s1(x) + c1),

(22)

and from (16) we obtain

B(x) =
(R2

R

)2
κ1s1(x)s′1(x)(s1(x) + c1)(κ1(s1(x) + c1)− c2).

Doing the rescaling Y = βy, we can assume that the constant (R2/R)2κ1 = 1
and the constants R2/R and κ1 in the expression of pi(x) is one (see the
proof of Lemma 4). Note that B(x) is as in the statement of the theorem
as well as pi(x) for i = 1, 2, 3.
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2.1.2: R2(x) ∈ R[x] \ R. Since R3(x) = R we have s2(x) = R1(x)R and
q1(x) = R2(x)s2(x)/R. From (18) we get

R2(x)s1(x)c2
R

= R2(x)s2(x)c1 + q3(x)c3(x),

and so

q3(x) =
R2(x)

c3

(
s1(x)c2 −

c1s2(x)

R

)
.

Since q1(x)s1(x) = q2(x)s2(x) we get q2(x) = R2(x)s1(x)/R. In short

p1(x) =
R2(x)

R
s1(x)s2(x),

p2(x) =
R2(x)

R
s2(x)(s1(x) + c1),

p3(x) =
R2(x)

R
s1(x)(s2(x) + c2).

We consider two cases:

2.1.2.1: s1(x) and s2(x) are coprime. In this case the maximum common
divisor between p2(x) and p3(x) is R2(x) and so from (16) we get

B(x) =
R2(x)

R2
s2(x)(R2(x)s2(x))′s1(x)(s1(x) + c1)

=
R2(x)

R2
s2(x)s1(x)R′2(x)(s1(x) + c1)(s2(x) + c2),

and so

(R2(x)s2(x))′ = R′2(x)(s2(x) + c2),

that is

R′2(x)s2(x) +R2(x)s′2(x) = R′2(x)s2(x) +R′2(x)c2,

which yields
R′2(x)

R2(x)
=
s′2(x)

c2
.

Hence R2(x) = ec2s2(x) which is not possible.

2.1.2.2: s1(x) and s2(x) are not coprime. In this case we write

s1(x) = κ(x)ŝ1(x), s2(x) = κ(x)ŝ2(x),

with κ(x), ŝ1(x), ŝ2(x) ∈ R[x] with κ(x) 6∈ R. Then

p1(x) =
R2(x)

R
κ2(x)ŝ1(x)ŝ2(x),

p2(x) =
R2(x)

R
κ(x)ŝ2(x)(κ(x)ŝ1(x) + c1),

p3(x) =
R2(x)

R
κ(x)ŝ1(x)(κ(x)ŝ2(x) + c2).
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Then

B(x) =
R2(x)

R2
κ(x)(R2(x)κ(x))′ŝ2(x)(κ(x)ŝ1(x) + c1)ŝ1(x)(κ(x)ŝ2(x) + c2)

=
R2(x)

R2
κ(x)ŝ2(x)(R2(x)κ(x)ŝ2(x))′ŝ1(x)(κ(x)ŝ1(x) + c1)κ(x),

and so

(R2(x)κ(x))′(κ(x)ŝ2(x) + c2) = κ(x)(R2(x)κ(x)ŝ2(x))′,

which yields
(R2(x)κ(x))′c2 = (R2(x)κ(x))κ(x)ŝ2(x).

This is not possible because the left hand side has less dimension than the
right hand side. In summary, Subcase 2.1.2 is not possible.

Subcase 2.2: R2(x) ∈ R[x] \R. We have q1(x) = R1(x)R2(x) and s2(x) =
R1(x)R3(x). Then

R2(x)s1(x)c2
R3(x)

= R1(x)R2(x)c1 + q3(x)c3.

In particular there exists T (x) ∈ R[x] so that

q3(x) = R2(x)T (x),

and so
s1(x)c2
R3(x)

= R1(x)c1 + T (x)c3,

which yields s1(x) = R4(x)R3(x). Therefore, from p1(x) in (8) we get

q2(x)s2(x) = q1(x)s1(x) = R1(x)R2(x)R3(x)R4(x) = q2(x)R1(x)R3(x)

and so
q2(x) = R2(x)R4(x).

Hence we have

p1(x) = q1(x)s1(x) = R1(x)R2(x)R3(x)R4(x),

p2(x) = q1(x)(s1(x) + c1) = R1(x)R2(x)(R3(x)R4(x) + c1),

p3(x) = q2(x)(s2(x) + c2) = R2(x)R4(x)(R1(x)R3(x) + c2).

We consider two cases.

2.2.1: R1(x) and R4(x) are coprime. We have

B(x) = R1(x)R2(x)(R1(x)R2(x))′R3(x)R4(x)(R3(x)R4(x) + c1)

= R2(x)R′2(x)R1(x)R4(x)(R3(x)R4(x) + c1)(R1(x)R3(x) + c2),

and so
(R1(x)R2(x))′R3(x) = R′2(x)(R1(x)R3(x) + c2),

which yields
R′1(x)R2(x)R3(x) = c2R

′
2(x).

This is not possible because the right hand side has less dimension than the
left hand side.
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2.2.2: R1(x) and R4(x) are not coprime. We write

R1(x) = R(x)R̂1(x), R4(x) = R(x)R̂4(x)

where R(x), R̂1(x), R̂4(x) ∈ R[x] with R(x) 6∈ R. Note that

p1(x) = q1(x)s1(x) = R2(x)R̂1(x)R2(x)R3(x)R̂4(x),

p2(x) = q1(x)(s1(x) + c1) = R(x)R̂1(x)R2(x)(R3(x)R(x)R̂4(x) + c1),

p3(x) = q2(x)(s2(x) + c2) = R2(x)R(x)R̂4(x)(R(x)R̂1(x)R3(x) + c2).

Then

B(x) = (R(x)R̂1(x)R2(x))′R(x)R̂1(x)R2(x)R(x)R3(x)R̂4(x)(R3(x)R(x)R̂4(x) + c1)

= R(x)R2(x)(R(x)R2(x))′R̂1(x)R̂4(x)(R3(x)R4(x) + c1)(R(x)R̂1(x)R3(x) + c2),

and so

(R(x)R̂1(x)R2(x))′R(x)R3(x) = (R(x)R2(x))′(R(x)R̂1(x)R3(x) + c2),

that is

(R(x)R2(x))′R̂1(x)R(x)R3(x) + (R(x)R2(x))R̂′1(x)R(x)R3(x)

= (R(x)R2(x))′(R(x)R̂1(x)R3(x) + c2(R(x)R2(x))′,

which yields

R(x)R2(x)(R̂1(x))′R(x)R3(x) = c2(R(x)R2(x))′.

This is not possible because the right hand side has less dimension than the
left hand side. So subcase 2.2 is not possible.

In short from (22) there are at most three rational limit cycles and if they
exist then there must exist a polynomial S(x) = s1(x) and two different
constants c1, c2 ∈ R \ {0} such that from Lemma 3 we have S(0) = S(1),
and S(x) 6= 0, S(x) + c1 6= 0 and S(x) + c2 6= 0 for x ∈ [0, 1], and B(x) is as
in (2). Moreover the three limit cycles can be taken to be

p1(x) = S(x)(S(x) + c1),

p2(x) = (S(x) + c1)(S(x) + c2),

p3(x) = S(x)(S(x) + c2),

which are the ones given in (3) in the statement of the theorem. Note that
yi(x) = 1/pi(x) for i = 1, 2, 3, satisfy (4) with c = 1 and that pi(0) = pi(1)
and pi(x) 6= 0 for x ∈ [0, 1]. Hence, in view of Lemma 3, the three solutions
y1, y2, y3 are three periodic solutions of (1). Moreover they are isolated and
so they are limit cycles of (1). This concludes the proof of the theorem. �

Now we provide an Abel equation (1) with three rational limit cycles.
Indeed, taking S(x) = x2 − x+ 1, c1 = 1 and c2 = 2 we construct the Abel
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equation (1) with

A(x) = −3(−1 + 2x)− 3(−1 + 2x)(1− x+ x2),

B(x) = (−1 + 2x)(1− x+ x2)(2− x+ x2)(3− x+ x2).

Then system (1) has the three rational solutions yi(x) = 1/pi(x) for i =
1, 2, 3 with

p1(x) = (x2 − x+ 1)(x2 − x+ 2),

p2(x) = (x2 − x+ 2)(x2 − x+ 3),

p3(x) = (x2 − x+ 1)(x2 − x+ 3).

Note that S(0) = S(1) and S(x) 6= 0 for x ∈ [0, 1]. Moreover, S(x) + 1 =
x2 − x + 2 6= 0 for x ∈ [0, 1], and S(x) + 2 = x2 − x + 3 6= 0 for x ∈ [0, 1].
The Abel system that we have constructed has three rational limit cycles.

3. Proof of Theorem 2

To decide whether a periodic solution is a hyperbolic limit cycle we need
the following lemma, whose proof can be found in [17].

Lemma 5. If y = 1/p(x) is a periodic solution of system (1) then it is a

hyperbolic limit cycle if and only if
∫ 1
0 (B(x)/p2(x)) dx 6= 0.

Now we can prove Theorem 2. In view of Theorem 1 the three limit cycles
are yi = 1/pi(x) with pi given in (3) for i = 1, 2, 3. We will prove first that y0
is not a hyperbolic limit cycle. In view of (3) since p1(x) = S(x)(S(x) + c1),
we have that

B(x)

p21(x)
=
S′(x)(S(x) + c2)

S(x)(S(x) + c1)
.

Note that we can write

S′(x)(S(x) + c2)

S(x)(S(x) + c1)
=
c2
c1

S′(x)

S(x)
+
c1 − c2
c1

S′(x)

S(x) + c1
.

Hence ∫ 1

0

B(x)

p21(x)
dx =

c2
c1

logS(x)
∣∣1
0

+
c1 − c2
c1

log(S(x) + c1)
∣∣1
0

= 0,

because S(0) = S(1). So the periodic solution y = 1/p1(x) is not a hyper-
bolic limit cycle.

For y = 1/p2(x) with p2(x) = S(x)(S(x) + c2), we have

B(x)

p22(x)
=
S′(x)(S(x) + c1)

S(x)(S(x) + c2)

and the proof is the same as for 1/p1(x) interchanging the roles of c1 and
c2.
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Finally, for the case of y = 1/p3(x) since p3(x) = (S(x) + c1)(S(x) + c2)
it follows that

B(x)

p22(x)
=

S′(x)S(x)

(S(x) + c1)(S(x) + c2)
.

Note that we can write

S′(x)S(x)

(S(x) + c1)(S(x) + c2)
=

c1
c1 − c2

S′(x)

S(x) + c1
− c2
c1 − c2

S′(x)

S(x) + c2
.

Hence∫ 1

0

B(x)

p22(x)
dx =

c1
c1 − c2

log(S(x) + c1)
∣∣1
0
− c2
c1 − c2

log(S(x) + c2)
∣∣1
0

= 0

because S(0) = S(1). So, the periodic solution y = 1/p3(x) is not a hyper-
bolic limit cycle. This concludes the proof of the theorem.
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