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Abstract. In this paper we characterize the phase portraits of the complex

Abel polynomial differential equations

ż = (z − a)(z − b)(z − c),

with z ∈ C, a, b, c ∈ C. We give the complete description of their phase

portraits in the Poincaré disc (i.e. in the compactification of R2 adding the
circle S1 of the infinity) modulo topological equivalence.

1. Introduction and statement of the main results

Numerous problems of applied mathematics, or in physics, chemistry, economics,
... are modeled by polynomial differential systems. Excluding linear systems the
quadratic polynomial differential systems are the ones with the lowest degree of
complexity, and the large bibliography on them proves their relevance, see the
books [1, 12, 13] and the surveys [3, 4]. After the quadratic polynomial differential
systems come the cubic ones, which also have many applications. Among the cubic
polynomial differential systems we emphasize the Abel systems, see for instance
the papers [2, 6, 8] where the Abel systems are applied to modelize problems from
Ecology, control theory for electrical circuits and cosmology, respectively.

In this paper we characterize the phase portraits of the complex Abel differential
equations

(1) ż = (z − a)(z − b)(z − c),

with z ∈ C, a, b, c ∈ C and the dot means derivative with respect to the time t ∈ R.
We write z = x + iy, a = a1 + ia2, b = b1 + ib2, c = c1 + ic2, with x, y ∈ R and
ai, bi, ci ∈ R for i = 1, 2. The complex differential equation (1) becomes the real
differential system

ẋ = −a1b1c1 + a2b2c1 + a2b1c2 + a1b2c2 + (a1b1 − a2b2 + a1c1 + b1c1

− a2c2 − b2c2)x− (a2b1 + a1b2 + a2c1 + b2c1 + a1c2 + b1c2)y

− (a1 + b1 + c1)x2 + 2(a2 + b2 + c2)xy + (a1 + b1 + c1)y2 + x3 − 3xy2,

ẏ = −a2b1c1 − a1b2c1 − a1b1c2 + a2b2c2 + (a2b1 + a1b2 + a2c1 + b2c1

+ a1c2 + b1c2)x+ (a1b1 − a2b2 + a1c1 + b1c1 − a2c2 − b2c2)y

− (a2 + b2 + c2)x2 − 2(a1 + b1 + c1)xy + (a2 + b2 + c2)y2 + 3x2y − y3.

(2)
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The objective of this work is to classify the phase portraits of the Abel polynomial
differential systems (2) in the Poincaré disc modulo topological equivalence. As any
polynomial differential system, system (2) can be extended to an analytic system
on a closed disc D of radius one, whose interior is diffeomorphic to R2 and its
boundary, the circle S1, plays the role of the infinity. This closed disc is denoted by
D2 and called the Poincaré disc, because the technique for doing such an extension
is the Poincaré compactification for a polynomial differential system in R2, which
is described in details in Chapter 5 of [5], see also subsection 2.1. In this paper we
shall use the notation of that chapter. By using this compactification technique the
dynamics of system (2) in a neighborhood of the infinity can be studied.

See subsection 2.2 for the definition of equivalent topological phase portraits,
and for seeing that it is sufficient to draw the separatrices in the Poincaré disc and
an orbit in every canonical region for characterizing a phase portrait in the Poincaré
disc.

Theorem 1. There are only six different topologically phase portraits of the Abel
differential system (2) in the Poincaré disc, see Figure 1.

In Figure 1 the phase portrait
(a) is realized when a1 = a2 = −1, b1 = b2 = 0, and c1 = c2 = −1/2;
(b) is realized when a1 = a2 = 0, b1 = −3/2, b2 = −3, c1 = −2, c2 = −1;
(c) is realized when a1 = a2 = b1 = 0, b2 = 1, c1 = 0, c2 = 2;
(d) is realized when a1 = a2 = 0, b1 = 2, b2 = −1, c1 = −2, c2 = −1;
(e) is realized when a1 = a2 = 0, b1 = −8, b2 = −6, c1 = −3, c2 = −1;
(f) is realized when a1 = −1, a2 = 0, b1 = −1, b2 = 0, c1 = 0, c2 = 1;
(g) is realized when a1 = a2 = b1 = b2 = 0, c1 = −1, c2 = −1/2;
(h) is realized when a1 = a2 = b1 = b2 = c1 = 0, c2 = −1; and
(i) is realized when a1 = a2 = b1 = b2 = c1 = c2 = 0.

2. Preliminaries

2.1. Poincaré compactification. For a complete description of the Poincaré com-
pactification method we refer to chapter 5 of [5]. In what follows we remember some
formulas.

Consider a polynomial differential system in R2 with degree 3.

ẋ = P (x, y), ẏ = Q(x, y)

or equivalently its associated polynomial vector field X = (P,Q). As we said be-
fore, any polynomial differential system can be extended to an analytic differential
system on a closed disc of radius one centered at their origin of coordinates, whose
interior is diffeomorphic to R2 and its boundary, the circle S1, plays the role of the
infinity.

In order to study the compactified vector field we consider four open charts
covering the disc D:

φ1 : R2 −→ U1, φ1(x, y) = (1/v, u/v),

φ2 : R2 −→ U2, φ1(x, y) = (u/v, 1/v)
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(a) 3 centers (b) 1 center 2 foci (c) 3 nodes

(d) 1 node 2 foci (e) 3 foci (f) 1 doble 1 center

(g) 1 doble 1 focus (h) 1 doble 1 node (i) 1 triple

Figure 1. The nine topological phase portraits in the Poincaré disc of
system (2) if we distinguish between nodes and foci, without this dis-
tintion the phase portraits (c), (d) and (e) are topologically equivalent,
and also the phase portraits (g) and (h) are topologically equivalent. So
there are only six different topological phase portraits.

and
ψk : R2 −→ Vk, ψk(x, y) = −φk(x, y), k = 1, 2

with
U1 = {(u, v) ∈ D : u2 + v2 ≤ 1 and u > 0},
U2 = {(u, v) ∈ D : u2 + v2 ≤ 1 and v > 0},
V1 = {(u, v) ∈ D : u2 + v2 ≤ 1 and u < 0},
V2 = {(u, v) ∈ D : u2 + v2 ≤ 1 and v < 0}.
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The Poincaré compactification is denoted by p(X). The expression of p(X) in
the chart U1 is

u̇ = v3(−uP +Q), v̇ = −v4P,
where P and Q are evaluated at (1/v, u/v).

The expression of p(X) in the chart U2 is

u̇ = v3(P − uQ), v̇ = −v4Q,

where P and Q are evaluated at (u/v, 1/v). Moreover in all these local charts the
points (u, v) of the infinity have its coordinate v = 0.

The expression for the extend differential system in the local chart Vi, i = 1, 2
is the same as in Ui.

2.2. Topological equivalence of two polynomial vector fields. Let X1 and
X2 be two polynomial vector fields on R2. We say that they are topologically
equivalent if there exists a homeomorphism on the Poincaré disc D which preserves
the infinity S1 and sends the orbits of π(p(X1)) to orbits of π(p(X2)), preserving
or reversing the orientation of all the orbits.

A separatrix of the Poincaré compactification π(p(X)) is one of following orbits:
all the orbits at the infinity S1, the finite singular points, the limit cycles, and the
two orbits at the boundary of a hyperbolic sector at a finite or an infinite singular
point, see for more details on the separatrices [9, 10].

The set of all separatrices of π(p(X)), which we denote by ΣX , is a closed set
(see [10]).

A canonical region of π(p(X)) is an open connected component of D \ΣX . The
union of the set ΣX with an orbit of each canonical region form the separatrix con-
figuration of π(p(X)) and is denoted by Σ′

X . We denote the number of separatrices
of a phase portrait in the Poincaré disc by S, and its number of canonical regions
by R.

Two separatrix configurations Σ′
X1

and Σ′
X2

are topologically equivalent if there
is a homeomorphism h : D −→ D such that h(Σ′

X1
) = Σ′

X2
.

According to the following theorem which was proved by Markus [9], Neumann
[10] and Peixoto [11], it is sufficient to investigate the separatrix configuration of a
polynomial differential system, for determining its global phase portrait.

Theorem 2. Two Poincaré compactified polynomial vector fields π(p(X1)) and
π(p(X2)) with finitely many separatrices are topologically equivalent if and only if
their separatrix configurations Σ′

X1
and Σ′

X2
are topologically equivalent.

3. Infinite singular points

The following lemma summarizes the information at the infinite singular points.

Lemma 3. There are two pairs of infinite singular points which are saddles located
at the origins of the local chats U1, U2, V1 and V2.
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Proof. First we determine the local phase portrait of the infinite singular points in
the local chart U1. The expression of system (2) in this chart is

u̇ = 2u− (a2 + b2 + c2)v − (a1 + b1 + c1)uv + (a2b1 + a1b2 + a2c1 + b2c1

+ a1c2 + b1c2)v2 + 2u3 − (a2 + b2 + c2)u2v − (a2b1c1 + a1b2c1 + a1b1c2

− a2b2c2)v3 − (a1 + b1 + c1)u3v + (a2b1 + a1b2 + a2c1 + b2c1 + a1c2

+ b1c2)u2v2 + (a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2)uv3,

v̇ = −v + (a1 + b1 + c1)v2 + 3u2v − 2(a2 + b2 + c2)uv2 − (a1b1 − a2b2
+ a1c1 + b1c1 − a2c2 − b2c2)v3 − (a1 + b1 + c1)u2v2 + (a2b1 + a1b2

+ a2c1 + b2c1 + a1c2 + b1c2)uv3 + (a1b1c1 − a2b2c1 − a2b1c2 − a1b2c2)v4.

The singular points (u, 0) in the local chart U1 satisfy 2u(1+u2) = 0. So the unique
singular point in the local chart U1 is the origin. Computing the eigenvalues of the
Jacobian matrix at the origin we obtain that they are 2 and −1. So the origin is a
saddle.

Now we analyze the phase portrait in the local chart U2, we need to the study
the origin of U2, the other infinite singular points have been studied in the local
chart U1. The expression of the system in this chart is

u̇ = −2u+ (a1 + b1 + c1)v + (a2 + b2 + c2)uv − (a2b1 + a1b2 + a2c1 + b2c1

+ a1c2 + b1c2)v2 − 2u3 + (a1 + b1 + c1)u2v − (a1b1c1 − a2b2c1 − a2b1c2
− a1b2c2)v3 + (a2 + b2 + c2)u3v − (a2b1 + a1b2 + a2c1 + b2c1 + a1c2

+ b1c2)u2v2 + (a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2)uv3

v̇ = v − (a2 + b2 + c2)v2 − 3u2v + 2(a1 + b1 + c1)uv2 − (a1b1 − a2b2 + a1c1

+ b1c1 − a2c2 − b2c2)v3 + (a2 + b2 + c2)u2v2 − (a2b1 + a1b2 + a2c1 + b2c1

+ a1c2 + b1c2)uv3 + (a2b1c1 + a1b2c1 + a1b1c2 − a2b2c2)v4.

Note that the origin of the local chart U2 is a singular point whose eigenvalues of
the Jacobian matrix at this point are −2 and 1. So the origin is a saddle. This
completes the proof of the lemma. �

4. Finite singular points

The finite singular points of system (2) are the real solutions of ẋ = ẏ = 0.
Computing such solutions we obtain

(x, y) = (a1, a2), (x, y) = (b1, b2), (x, y) = (c1, c2).

Now we study the local phase portrait of each of the finite singular points.

We will use the following three propositions.

Proposition 4. Let p be a singular point of system (2) such that their eigenvalues
are purely imaginary. Then p is an isochronous center.

The proof of Proposition 4 is given in [7, Corollary 2.7 (a)].
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Proposition 5. Let p be a singular point of system (2) of multiplicity k ∈ {2, 3}.
Then the local phase portrait of p is formed by 2(k− 1) elliptic sectors separated by
parabolic sectors.

The proof of Proposition 5 is given in [7, Corollary 2.7 (b)].

Proposition 6. System (2) has no limit cycles.

The proof of Proposition 6 is given in [7, Theorem 1.3 (a)].

The finite singular point (a1, a2)

The eigenvalues associated to the finite singular point (a1, a2) are λ1± iλ2 where

λ1 = a21 − a22 − a1b1 + a2b2 − a1c1 + b1c1 + a2c2 − b2c2
λ2 = b2c1 − a2(b1 + c1) + b1c2 − a1(b2 + c2 − 2a2).

We have different possibilities. If λ2 6= 0 then we have a focus, hyperbolic if λ1 6= 0
and by Proposition 4 is a center if λ1 = 0. If λ2 = 0 and λ1 6= 0 then we have a
node. If λ1 = λ2 = 0 then the singular point is linearly zero. In this case we have
that either b = a and c 6= a, or b = c = a. In view of Proposition 5 in the first case
the singular point (a1, a2) is formed by two elliptic sectors separated by parabolic
sectors and in the second case the singular point (a1, a2) is formed by four elliptic
sectors separated by parabolic sectors.

The finite singular point (b1, b2)

The eigenvalues associated to the finite singular point (b1, b2) are λ3± iλ4 where

λ3 = −a1b1 + b21 + a2b2 − b22 + a1c1 − b1c1 − a2c2 + b2c2

λ4 = a2b1 + a1b2 − 2b1b2 − a2c1 + b2c1 − a1c2 + b1c2.

We have different possibilities. If λ4 6= 0 then we have a focus, hyperbolic if λ3 6= 0
and by Proposition 4 is a center if λ3 = 0. If λ4 = 0 and λ3 6= 0 then we have a
node. Finally, if λ4 = 0 and λ3 = 0, then the singular point is linearly zero. We can
consider that b 6= a because this case has been already studied. Then the condition
λ4 = λ3 = 0 implies b = c. Since c 6= a then in view of Proposition 5 the singular
point (b1, b2) is formed by two elliptic sectors separated by parabolic sectors.

The finite singular point (c1, c2)

The eigenvalues associated to the finite singular point (c1, c2) are λ5± iλ6 where

λ5 = a1b1 − a2b2 − a1c1 − b1c1 + c21 + a2c2 + b2c2 − c22,
λ6 = b2c1 + a2(−b1 + c1) + b1c2 − 2c1c2 + a1(−b2 + c2).

We have different possibilities. If λ6 6= 0 then we have a focus, hyperbolic if λ5 6= 0
and by Proposition 5 is a center if λ5 = 0. If λ6 = 0 and λ5 6= 0 then we have a
node. Finally, if λ6 = λ5 = 0 then either c = a, or c = b, and these two cases have
been studied before.

Combining the different possibilities for the finite singular points we have in
principle the following cases:
three centers;
two centers and a node;
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two centers and a focus;
one center and two nodes;
one center, one node and one focus;
one center and two foci;
three nodes;
two nodes and a focus;
one node and two foci;
three foci;
one point formed by two elliptic sectors separated by parabolic sectors and a center;
one point formed by two elliptic sectors separated by parabolic sectors and a node;
one point formed by two elliptic sectors separated by parabolic sectors and a focus;
and
one point formed by four parabolic sectors separated by parabolic sectors.
However the cases:
two centers and a node;
two centers and a focus;
one center and two nodes;
one center, one node and one focus; and
two nodes and a focus
are not possible. We only show that the case two centers and a node is not possible,
the other non possible cases are proved in a similar way. Indeed, the singular points
a and b are centers if and only if λ1 = λ3 = 0 and c is a node if and only if λ6 = 0.
Then it is easy to check that the system λ1 = λ3 = λ6 = 0 has no solutions in ai,
bi and ci for i = 1, 2.

In short, only nine possibilities for the finite singular points are indeed realizable,
the ones of Figure 1.

5. Global phase portraits

Combining the study of the local phase portraits of the finite and infinite singular
points, together with Proposition 6, which states that the Abel system (2) has no
limit cycles, and combining the different possibilities for the finite singular points we
conclude that the possible global phase portraits are the nine described in Figure 1.
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