
GLOBAL DYNAMICS FOR THE SZEKERES SYSTEM

WITH NON-ZERO COSMOLOGICAL CONSTANT

JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. The Szekeres system with cosmological constant term de-
scribes the evolution of the kinematic quantities for the Einstein field
equations in dimension four. It is a Hamiltonian system (with Hamil-
tonian H). We restrict the dynamics on each one of the level surfaces
H = h with h ∈ R and using the Poincaré compactification on R3 we
analyze the global dynamics of the Szekeres system.

It was known that the Szekeres system with cosmological constant
term exhibits an attractor in the finite regime. Here we provide a new
proof of the finite attractor and additionally we prove that also exhibits
a repulsor in the finite regime, and that at infinity there is an atractor
and a repulsor.

1. Introduction and statement of the main results

A Szekeres system represents the diagonal of the Einstein field equations
G − Λg = T for a gravitational model where the energy-momentum tensor
T is that of a pressureless inhomogeneous fluid, Λ > 0 is the cosmological
constant and G = R− 1

2Rg is the Einstein tensor for the background space,
see for details [6]. The Szekeres system also can be obtained from the model
of the silent Universe system, see for details [1]. Because of its importance
in physical applications it has been widely investigated in the literature
using Darboux functions, Jacobi’s multiplier method, Painlevé method, Lie
symmetries, ....

It was proved in [12] (see also [4, 9]) that with appropriate variables, the
Szekeres system admits the Hamiltonian formalism with Hamiltonian

H = pxpy −
Λ

3
xy +

x

y2
,
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and then its equations of motion are

ẋ = py,

ẏ = px,

ṗx =
Λ

3
x+

2x

y3
,

ṗy =
Λ

3
y − 1

y2
,

where the dot denotes derivative with respect to the time t.

We introduce a rescaling of the time by dt = y3 ds and with this new time
the differential system becomes

ẋ = pyy
3,

ẏ = pxy
3,

ṗx =
Λ

3
xy3 + 2x,

ṗy =
Λ

3
y4 − y,

now the dot denotes derivative with respect the new independent variable
s.

We shall restrict the study of the dynamics of this system to each energy
level H = h, h ∈ R. In particular setting H = h and solving this equation
with respect to the variable px we get

px =
−3x+ 3hy2 + xy3Λ

3pyy2
,

and so the restricted system on H = h becomes, after a new rescaling of the
time variable by dτ = 3py ds becomes

ẋ = 3p2yy
3,

ẏ = y(3hy2 + x(Λy3 − 3),

ṗy = xpy(Λy
3 + 6),

(1)

here the dot denotes derivative with respect to the variable τ .

Note that the polynomial differential system (1) depends on two param-
eters: Λ > 0 and h ∈ R. We will study its global dynamics in the com-
pactification of R3 in function of the parameters h and Λ. We note that the
global description of the flow of a differential system in R3 is generally very
difficult. In this paper using the Poincaré compactification we are able to do
it. We recall that roughly speaking the Poincaré ball is obtained identifying
R3 with the interior of the 3-dimensional ball of radius one centered at the
origin, and extending analytically the flow of system (1) to the boundary
S2 of that ball, and consequently to the infinity of R3. For more details see
subsection 2.2.
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In [7, 8] the authors made a detailed analysis on the dynamics in the
Poincaré disc of the Szekeres system when Λ = 0 and it was found that
the orbits come from the infinity of R4 and go to infinity. In this paper we
extend this analysis by considering that Λ > 0. Other studies related with
this model can be also obtained in [10].

The main result of this paper about the finite dynamics in the Poincaré
ball is the following one.

Theorem 1. The following statement hold for system (1).

(a) It has the rational first integral

I =
9x2 − 18hxy2 − 18v2y3 + 9h2y4 − 6x2y3Λ + 6hxy5Λ− 3v2y6Λ + x2y6Λ2

9p2yy
4

.

(b) The planes y = 0, py = 0 and the surface 9x2 − 18hxy2 − 18p2yy
3 +

9h2y4 − 6x2y3Λ + 6hxy5Λ − 3p2yy
6Λ + x2y6Λ2 = 0 are invariant by

the flow of system (1).

(c) The x-axis, the py-axis and the curve

Ch =

{
(x, y, py) ∈ R3 : py = 0, x = − 3hy2

y3λ− 3

}
with y3λ− 3 ̸= 0,

are filled up with equilibrium points.

(d) The x-axis for x ̸= 0 has a 2-dimensional stable and a 2-dimensional
unstable manifolds. While the curve Ch when hy(y3Λ − 3) ̸= 0 has
a 3-dimensional stable manifold in the arc of the curve whose points

satisfy
3hy2(6 + y3Λ)

y,3 Λ− 3
> 0 (i.e. this arc is an attractor), and a 3-

dimensional unstable manifold in the arc of the curve whose points

satisfy
3hy2(6 + y3Λ)

y3Λ− 3
< 0 (i.e. this arc is a repulsor).

Theorem 1 is proved in section 3.

It follows from Theorem 1 that there is an attractor and a repulsor of the
flow in the finite dynamics.

The main result of the paper on the infinite dynamics in the Poincaré ball
(that is in the Poincaré sphere) is the following one.

Theorem 2. The phase portraits of system (1) in the local chart U1 of the
infinity S2 is topologically equivalent to the one described in Figure 1. More
precisely, on the sphere S2 of the infinity there are three maximal circles filled
up with equilibria. The equations of these circles in the local chart U1 are
z1 = z3 = 0, and z2 = ±

√
Λ/3, z3 = 0. Moreover the following statements

hold.
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L1

L2

L3

Figure 1. The phase portrait in the local chart U1 of the
infinity. The straight line L1 is z1 = z3 = 0. The straight
line L2 is z2 =

√
Λ/3, z3 = 0. The straight line L3 is z2 =

−
√

Λ/3, z3 = 0.

(a) In the sphere S2 of the infinity at each equilibrium of the circles

z2 = ±
√
Λ/3, z3 = 0 arrive two orbits one in each side of the circle

if z1 > 0, or exit two orbits one in each side of the circle if z1 < 0.

(b) In the Poincaré ball B at each infinite equilibrium of the circles z2 =

±
√

Λ/3, z3 = 0 arrive a 2-dimensional stable manifold if z1 > 0, or
exit a 2-dimensional unstable manifold if z1 < 0.

(c) In the Poincaré ball B the circles z2 = ±
√
Λ/3, z3 = 0 have a 3-

dimensional stable manifold if z1 < 0 (i.e. these circles are attrac-
tors), or a 3-dimensional unstable manifold z1 < 0 (i.e. these circles
are repulsors).

Theorem 2 is proved in section 4.

We note that from statement (b) of Theorem 2 at infinity there is an
attractor and a repulsor.

2. Preliminaries

2.1. Normally hyperbolic theory. Let ϕ be a smooth flow on a manifold
M and assume that C is a submanifold of M consisting entirely of equi-
librium points for the flow ϕt. C is said to be normally hyperbolic if the
tangent bundle of M over C splits into three subbundles TC (the tangent
bundle of C), Es and Eu that are invariant under dϕt, and such that dϕt

contracts Es exponentially and dϕt expands E
u exponentially.
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From the normally hyperbolic theory one has the usual existence of smooth
stable and unstable manifolds to normally hyperbolic submanifolds of equi-
librium points.

Theorem 3. Let C be a normally hyperbolic submanifold of equilibrium
points for ϕt. Then there exist smooth stable and unstable manifolds tangent
along C to Es ⊕ TC and Eu ⊕ TC, respectively.

The proof of this theorem can be found in [5].

2.2. Poincaré compactification in R3. Poincaré in his Ph.D. introduced
what we call now the Poincaré compactification of the polynomial vector
fields in the plane R2, see [11] and Chapter 5 of [3]. This compactification
was extended to polynomial vector fields in Rn, see [2].

Consider in R3 a polynomial vector field X = (P1, P2, P3) of degree n, i.e.
Pi = Pi(x, y, z) are polynomials and n = max{deg(Pi)} : i = 1, 2, 3}. Let

S3 = {y = (y1, y2, y3, y4) ∈ R4 : ||y|| = 1},

S+ = {y ∈ S3 : y4 > 0} and,

S− = {y ∈ S3 : y4 < 0}.

be the unit sphere in R4, the northern hemisphere of S3 and the southern
hemisphere of S3, respectively. The tangent space of S3 at the point y is
denoted by TyS3, and the tangent hyperplane T(0,0,0,1)S3 = {(y1, y2, y3, 1) ∈
R4} is identified with R3.

Consider the central projections

f+ : R3 = T(0,0,0,1)S3 → S+, f− : R3 = T(0,0,0,1)S3 → S−
where

f±(x) = ±(x1, x2, x3, 1)

∆(x)
with ∆(x) =

(
1 +

3∑
i=1

x2i

)1/2

.

Using these central projections R3 is identified with S+ and S−. Note that
the equator of S3 is the 2-dimensional sphere S2 = {y ∈ S3 : y4 = 0}.

The maps f± define two copies of the vector field X on S3, one Df+ ◦X
in S+, and the other Df− ◦ X in S−. Denote by X the vector field on
S3 \ S2 = S+ ∪ S−, that restricted to S+ coincides with Df+ ◦ X, and
restricted to S− coincides with Df− ◦ X. We can extend analytically the
vector field X(y) to the whole sphere S3 setting p(X) = yn−1

4 X(y).

Using that S3 is a differentiable manifold, to compute the expression of
the vector field p(X), we consider the eight local charts (Ui, Fi), (Vi, Gi),
where

Ui = {y ∈ S3 : yi > 0} and Vi = {y ∈ S3 : yi < 0}, for i = 1, 2, 3, 4.
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Note that the diffeomorphisms Fi : Ui → R3 and Gi : Vi → R3 for i =
1, 2, 3, 4 are the inverse of the central projections from the origin to the
tangent hyperplane at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0) and
(0, 0, 0,±1), respectively.

The analytical vector field p(X) in the local charts U1, U2 and U3 become,
after a rescaling of the time variable,

zn3
(
− z1P1 + P2,−z2P1 + P3,−z3P1

)
, where Pi = Pi(1/z3, z1/z3, z2/z3),

zn3
(
− z1P2 + P1,−z2P2 + P3,−z3P2

)
, where Pi = Pi(z1/z3, 1/z3, z2/z3),

zn3
(
− z1P3 + P1,−z2P3 + P2,−z3P3

)
, where Pi = Pi(z1/z3, z2/z3, 1/z3),

respectively. The expression for p(X) in U4 is zn+1
3 (P1, P2, P3) and the

expression for p(X) in Vi is the same as in Ui multiplied by (−1)n−1, for all
i = 1, 2, 3, 4.

In what follows we will consider only the orthogonal projection of p(X)
from S+ to y4 = 0 and we will denote it again by p(X). Observe that
the projection of the closed S+ is a 3-dimensional closed ball of radius one,
denoted by B, whose interior is diffeomorphic to R3. Its boundary, S2,
corresponds to the infinity of R3. Moreover p(X) is defined in the whole
closed ball B in such way that the flow on the boundary, given by z3 = 0
in any local chart, is invariant. The vector field induced by p(X) on B is
called the Poincaré compactification of X, B is called the Poincaré ball, and
S2 is called the Poincaré sphere.

3. Proof of Theorem 1

Since
dI

dτ
=

∂I

∂x
x′ +

∂I

∂y
y′ +

∂I

∂yp
y′p = 0,

we obtain that I is a first integral of system (1), i.e. I is constant on the
orbits of system (1). So statement (a) is proved.

Since I is a rational first integral it is clear that the planes y = 0, py = 0
and the surface 9x2−18hxy2−18p2yy

3+9h2y4−6x2y3Λ+6hxy5Λ−3p2yy
6Λ+

x2y6Λ2 = 0 are invariant by the flow of system (1). Hence statement (b) is
proved.

Computing the finite singular points of system (1) we obtain that the two
straight lines x = y = 0 (the py-axis) and y = py = 0 (the x-axis), together
with the curve Ch (which only exists if y3λ− 3 ̸= 0) are filled with singular
points. Therefore statement (c) is proved.

The eigenvalues of the Jacobian matrix at the equilibrium points (x, 0, 0)
of the x-axis are 6x,−3x, 0. Therefore the x-axis for x ̸= 0 is normally hy-
perbolic. So from Theorem 3 the x-axis for x ̸= 0 has a 2-dimensional stable
and a 2-dimensional unstable manifolds. The stable manifold is formed by
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orbits which tend asymptotically to the line and the unstable manifold if
formed by orbits that tend asymptotically toward the line in the negative
time direction.

The eigenvalues of the Jacobian matrix at the equilibrium points of the
curve Ch are

−3hy2(6 + y3Λ)

y3Λ− 3
, −3hy2(6 + y3Λ)

y3Λ− 3
, 0.

Therefore this curve of equilibria is normally hyperbolic when hy(y3Λ−3) ̸=
0. Applying Theorem 3 we get that it has a 3-dimensional stable manifold
in the line of equilibrium points (x, y, py) = (−(3hy2)/(y3λ − 3), y, 0) sat-

isfying
3hy20(6 + y30Λ)

y30Λ− 3
> 0, and a 3-dimensional unstable manifold in the

line of equilibrium points (x, y, py) = (−(3hy2)/(y3λ − 3), y, 0) satisfying
3hy20(6 + y30Λ)

y30Λ− 3
< 0. This completes the proof of statement (d).

4. Proof of Theorem 2

In this section we study the dynamics of system (1) at infinity and near
infinity using the Poincaré compactification of the system in R3 described
in the subsection 2.2.

The expression of the Poincaré compactification p(X) of system (1) in the
local chart U1 is

ż1 = −z1(3z
3
1z

2
2 − 3hz21z

2
3 + 3z33 − z31Λ),

ż2 = z2(−3z31z
2
2 + 6z33 + z31Λ),

ż3 = −3z31z
2
2z3.

(2)

When z3 = 0 (which correspond to the points on the sphere S2 of the
infinity) system (2) becomes

ż1 = −z41(3z
2
2 − Λ),

ż2 = z31z2(−3z22 + Λ).
(3)

We have three circles on the sphere of the infinity filled up with equilibria
which are z1 = 0, z2 =

√
Λ/3 and z2 = −

√
Λ/3.

Doing a rescaling of the independent variable system (3) reduces to system

ż1 = −z1, ż2 = −z2.

So the origin of this differential system is a star node, and all orbits different
from the origin end at the origin following the straight lines through the
origin. Going back to the differential system (3) we obtain that the phase
portrait on the local chart U1 of the sphere S2 is the one of Figure 1.
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The eigenvalues of the Jacobian matrix at the points of the circle z1 =
z3 = 0 for system (2) and (3) are all zero and so they do not provide any
information about the dynamics of the system near them.

The eigenvalues of the Jacobian matrix of system (2) at the points of

the circles z2 = ±
√
Λ/3, z3 = 0 are 0,−2Λz31 and −Λz31 . By the normally

hyperbolicity theorem on the sphere S2 of the infinity at each equilibria of
the circles z2 = ±

√
Λ/3, z3 = 0 arrive two orbits one in each side of the

circle if z1 > 0, or exit two orbits one in each side of the circle if z1 < 0.
Hence statement (a) is proved.

Again by the normally hyperbolicity theorem at each equilibria of the
circles z2 = ±

√
Λ/3, z3 = 0 arrive a 2-dimensional stable manifold inside

the Poincaré ball if z1 > 0, or exit a 2-dimensional unstable manifold if
z1 < 0. This proves statement (b) and (c).

5. Conclusions

It was known that the Szekeres system with cosmological constant term
exhibits an attractor in the finite regime, see [10]. Here we provide a new
proof of the finite attractor (see statement (d) of Theorem 1) and addition-
ally we prove that also exhibits a repulsor in the finite regime, and that at
infinity there is an atractor and a repulsor (see statement (c) of Theorem
2).

Moreover we describe completely the flow on the infinite sphere and con-
sequently the dynamics near the infinity, see Theorem 2.
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