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Abstract. In this paper we characterize the phase portraits of the
Leslie-Gower model for competition among species. We give the com-
plete description of their phase portraits in the Poincaré disc (i.e. in
the compactification of R2 adding the circle S1 of the infinity) modulo
topological equivalence.

It is well-known that the equilibrium point of the Leslie-Gower model
in the interior of the positive quadrant is a global attractor in this open
quadrant, and in this paper we characterize where the orbits attracted
by this equilibrium born.

1. Introduction and statement of the main results

The dynamical relations between predators and prey is one of the funda-
mental objects of study in population dynamics. This is mainly due to the
fact that to its big number of applications [3] and because it allows a better
understanding of the behavior of food chains or trophic networks (see for
instance [14, 24]).

The first predator-prey model was proposed by the italian mathematician
Vito Volterra [1, 2] in its celebrate publish monograph in 1926 [25] where he
described the model as a non-linear system of ordinary differential equations.
This model coincided with a bidimensional model for biochemic interactions
proposed earlier by the american physicist Alfred J. Lotka and this is the
main reason why these type of models are called Lotka-Volterra models
[2, 14, 15, 24]. The main feature of this model is that the unique positive
equilibrium point is a center and all the orbits are closed concentric orbits
around the equilibrium point. This implies that the population sizes of the
predators and prey oscillate permanently around this point for any initial
condition. This behavior of the solutions of the system was early questioned
because this is not what happens in nature.

After Volterra’s work, there were many attempts to solve the objec-
tions of Volterra’s model. One of this attempts was Leslie–Gower model
[9] whose main feature is that the predator growth equation is of logistic
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type (see [1]) and so it considers implicitly that there exists competition
or self-interference between the predators. The Leslie–Gower model has
been studied from many points of view, see for instance the recent papers
[5, 6, 7, 8, 10, 11, 12, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33]. As far
as we know there are no results concerning the characterization of its global
dynamics taking into account the orbits which come or scape at infinity.
Thus, in this work we will study the global phase portraits of this model in
the Poincaré disc.

The Leslie–Gower model is described by the differential equations of the
form

ẋ = r
(
1− x

k

)
x− qxy, ẏ = s

(
1− y

nx

)
y,

where the dot means derivative with respect to the time t and all the param-
eters r, k, q, s, n are positive and have the following meaning:r is the intrinsic
rate of growth prey, k is the environmental bearing capacity for prey, q is
the maximum consumption rate (maximum quantity of necessary prey that
can be consumed for each predator in each unity of time), s is the intrinsic
rate of growth predators and n is the quantity of prey with food for the
predators.

This system is not defined in (0, 0). Making the reparameterization dτ =
nx dt, we obtain the equivalent system

ẋ =
(
nr − nr

k
x− nqy

)
x2, ẏ = s(nx− y)y,

where the dot denotes derivative with respect to the new independent vari-
able τ . Now doing the change (x, y, τ) → (X,Y, T ) given by

(1) X =
1

k
x, Y =

1

kn
y, T = knrτ,

we get

(2) ẋ = (1− x−Ay)x2, ẏ = B(x− y)y,

where the dot denotes derivative in the new time T and A = knq/r, B = s/r
being A,B > 0 and we have renamed the variables (X,Y ) again as (x, y).
Note that system (2) is a continuous extension of the original Leslie–Gower
system.

In fact we shall present the distinct global phase portraits of the Leslie–
Gower system when its parameters A,B varies in R+ in the Poincaré disc.
In this way we can describe the dynamics of their orbits which come or go to
the infinity of R2. For doing this we will use the Poincaré compactification.

Roughly speaking the Poincaré compactification of a polynomial differ-
ential system consists in extending this system to an analytic system on a
closed disc D2 of radius one, whose interior is identified with R2 and its
boundary, the circle S1, plays the role of the infinity. This closed disc is
called the Poincaré disc, because the technique for doing such an extension
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(a) 0 < B ≤ 1, S = 23, R = 6. (b) B > 1, S = 25, R = 8.

Figure 1. Phase portraits of system (2) on the Poincaré disc.

is due to Poincaré. For details on this compactification see [4, chapter 5] or
the summary presented in subsection 2.1.

Theorem 1. The phase portraits of system (2) in the Poincaré disc are
totpologically equivalent to one of the 2 phase portraits presented in Figure
1.

The proof of Theorem 1 is given in section 3.

In Figure 1 S denotes the number of separatrices and R denotes the
number of canonical regions. See for more details in subsection 2.1.

In subsection 3.2 we will show that system (2) has three equilibria, pj for
j = 1, 2, 3.

In the next corollary we provide new information from the ecological
Leslie-Gower predator-prey model. It is well-known that the equilibrium
point p3 in the interior of the positive quadrant is a global attractor in this
open quadrant, but it is was unknown where the orbits attracted by p3 born.

Corollary 2. The following two staements hold.

(a) If the parameter 0 < B ≤ 1, then all the orbits of the Leslie-Gower
system (1) attracted by p3 come from the endpoint of the positive
x-half-axis, except one orbit coming from the poinf p2.

(b) If the parameter B > 1, then all the orbits of the Leslie-Gower system
(1) attracted by p3 come from either the endpoint of the positive x-
half-axis, or from the endpoint of the positive y-half-axis, or from
the origin, except one orbit coming from the point p2.
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The proof of Corollary 2 follows immediately from the phase portraits of
Figure 1.

2. Preliminary results

2.1. Poincaré compactification. In order to classify the global dynamics
of a polynomial differential system the first crucial step is to characterize
their finite and infinite equilibrium points in the Poincaré compactification
[18]. The second main step for determining the global dynamics in the
Poincaré disc of a polynomial differential system is the characterization of
their separatrices. For the polynomial differential systems in the Poincaré
disc it is known that the separatrices are the infinite orbits, the finite equi-
librium points, the separatrices of the hyperbolic sectors of the finite and
infinite equilibrium points, and the limit cycles. If Σ denotes the set of all
separatrices in the Poincaré disc D2, Σ is a closed set and the components of
D2 \ Σ are called the canonical regions. We denote by S and R the number
of separatrices and canonical regions, respectively.

We consider the set of all polynomial vector fields in R2 of the form

(3) (ẋ, ẏ) = X(x, y) = (P (x, y), Q(x, y)),

where P and Q are real polynomials in the variables x and y of degrees d1
and d2, respectively. Take d = max{d1, d2}.

Denote by TpS2 be the tangent space to the 2-dimensional sphere

S2 = {s = (s1, s2, s3) ∈ R3 : s21 + s22 + s23 = 1}
at the point p. Assume that X is defined in the plane T(0,0,1)S2 = R2.

Consider the central projection f : T(0,0,1)S2 → S2. This map defines two
copies of X, one in the open northern hemisphere and the other in the open
southern hemisphere. Denote by X ′ the vector field Df ◦X defined on S2
except on its equator S1 = {s ∈ S2 : s3 = 0}. Clearly S1 is identified to
the infinity of R2. If X is a planar polynomial vector field of degree d, then
p(X) is the only analytic extension of sd−1

3 X ′ to S2. The vector field p(X) is
called the Poincaré compactification of the vector field X, for more details
see [4, chapter 5].

On the Poincaré sphere S2 we use the following six local charts, which are
given by Ui = {s ∈ S2 : si > 0} and Vi = {s ∈ S2 : si < 0}, for i = 1, 2, 3,
with the corresponding diffeomorphisms

φi : Ui → R2, ψi : Vi → R2,

defined by φi(s) = −ψi(s) = (sm/si, sn/si) = (u, v) for m < n and m,n ̸=
i. Thus (u, v) will play different roles in the distinct local charts. The
expressions of the vector field p(X) are

(u̇, v̇) =

(
vd

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

))
,−vd+1P

(
1

v
,
u

v

))
in U1,
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(u̇, v̇) =

(
vd

(
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

))
,−vd+1Q

(
u

v
,
1

v

))
in U2,

(u̇, v̇) = (P (u, v), Q(u, v)) in U3.

We note that the expressions of the vector field p(X) in the local chart
(Vi, ψi) is equal to the expression in the local chart (Ui, ϕi) multiplied by
(−1)d−1 for i = 1, 2, 3.

The orthogonal projection under π(y1, y2, y3) = (y1, y2) of the closed
northern hemisphere of S2 onto the plane s3 = 0 is a closed disc D2 of
radius one centered at the origin of coordinates called the Poincaré disc.
Since a copy of the vector field X on the plane R2 is in the open northern
hemisphere of S2, the interior of the Poincaré disc D2 is identified with R2

and the boundary of D2, the equator S1 of S2, is identified with the infinity
of R2. Consequently the phase portrait of the vector field X extended to
the infinity corresponds to the projection of the phase portrait of the vector
field p(X) on the Poincaré disc D2.

The equilibrium points of p(X) in the Poincaré disc lying on S1 are the
infinite equilibrium points of the corresponding vector field X. The equilib-
rium points of p(X) in the interior of the Poincaré disc, i.e. on S2 \ S1, are
the finite equilibrium points. We note that in the local charts U1, U2, V1 and
V2 the infinite equilibrium points have their coordinate v = 0.

For a polynomial vector field (3) if s ∈ S1 is an infinite equilibrium point,
then −s ∈ S1 is another infinite equilibrium point. Thus the number of
infinite equilibrium points is even and the local phase portrait of one is that
of the other multiplied by (−1)d+1.

2.2. Separatrix skeleton. Given a flow (D2, ϕ) by the separatrix skeleton
we mean the union of all the separatries of the flow together with one orbit
from each one of the canonical regions. Let C1 and C2 be the separatrix
skeletons of the flows (D2, ϕ1) and (D2, ϕ2) respectively. We say that C1 and
C2 are topologically equivalent if there exists a homeomorphism h : D2 → D2

which sends orbits to orbits preserving or reversing the direction of all orbits.
FromMarkus [13], Neumann [16] and Peixoto [17] it follows the next theorem
which shows that is enough to describe the separatrix skeleton in order to
determine the topological equivalence class of a differential system in the
Poincaré disc D2.

Theorem 3 (Markus–Neumann–Peixoto Theorem). Assume that (D2, ϕ1)
and (D2, ϕ2) are two continuous flows with only isolated equilibrium points.
Then these flows are topologically equivalent if and only if their separatrix
skeletons are equivalent.
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3. Proof of Theorem 1

We will state and prove several auxiliary results. As pointed out in the
introduction we will work with system (2) instead of the original Leslie–
Gower system.

3.1. Limit cycles. To state and prove the first of our results we recall
the Bendixson-Dulac theorem: consider a planar continuously differentiable
system

(4) ẋ = P (x, y), ẏ = Q(x, y),

defined in some open simply connected subset U ⊂ R2 and set X = (P,Q).
Assume that there exists a continuously differentiable function F : U → R
such that

∂(PF )

∂x
+
∂(QF )

∂y

does not change sign and vanishes only on a set of zero Lebesgue measure.
Then system (4) has no periodic orbits contained in U .

Proposition 4. System (2) has no limit cycles.

Proof. By uniqueness of solutions it is clear that if system (2) has periodic
orbits they do not intersect the coordinate axes. By making the change of
variables x → ±x, y → ±y, if necessary, we can restrict our study to the
first quadrant

Ω = {(x, y) ∈ R2 : x > 0, y > 0}
and prove that system (2) has no periodic orbits on it. We consider the
functionD : Ω → R, given byD(x, y) = 1/(x2y). Note that it is continuously
differentiable in Ω. Moreover,

∂(ẋD)

∂x
+
∂(ẏD)

∂y
= −B

x2
− 1

y
< 0,

because B > 0. Now we can apply the Bendixson-Dulac theorem and since
Ω is simply connected the system has no limit cycles. This concludes the
proof of the proposition. □

3.2. Finite equilibrium points. Now we study the finite equilibrium points
of system (2). We introduce the notation

∆ = (1 +B +AB)2 − 4(B + 2AB +A2B).

Proposition 5. System (2) has three singular points p1 = (0, 0), p2 = (1, 0)
and p3 = (1, 1)/(A + 1). The singular p1 is formed by two hyperbolic and
two parabolic sectors, the singular point p2 is a saddle and the singular point
p3 is an stable node if ∆ ≥ 0 and a stable focus if ∆ < 0.
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In the proof of the proposition we provide the explicit position of the
hyperbolic and parabolic sectors for p1 in function of the values of the pa-
rameter B.

Proof. It is clear that the singular points are p1 = (0, 0), p2 = (1, 0) and
p3 = (1, 1)/(A+ 1). The Jacobian matrix of the system is

J =

(
−x(3x+ 2Ay − 2) −Ax2

By B(x− 2y)

)
The eigenvalues of the Jacobian matrix at the singular point p2 are −1, B.
Since B > 0, the singular point p2 is a hyperbolic saddle.

The Jacobian matrix of the singular point p1 is

(
0 0
0 0

)
and so p1 is

linearly zero. To obtain the local behavior of this point we will use the
blow-up technique. To do so, let z = y/x and we get the equation

ẋ = x2(1− x−Axz), ż = xz(B + x−Bz +Axz − 1).

Rescaling by the independent variable (the time) by s = xT we obtain the
system

ẋ = x(1− x−Axz), ż = z(B + x−Bz +Axz − 1),

where the dot means derivative in the new variable s.

The Jacobian matrix evaluated at (0, 0) has the eigenvalues 1 and B − 1.
Therefore the point (0, 0) is a saddle if and only if B < 1, an unstable node
if and only if B > 1 and a saddle-node if and only if B = 1. Moreover,
the Jacobian matrix evaluated at (0, (B − 1)/B) has the eigenvalues 1 and
−(B−1). Therefore the point (0, (B−1)/B) is a saddle if and only if B > 1,
an unstable node if and only if B < 1 and a saddle-node if and only if B = 1.

Doing the blow-down process we obtain that if B ∈ (0, 1] then the lo-
cal phase portrait at the origin is the following: in the first quadrant (the
positive quadrant) there is a hyperbolic sector and in the second quadrant
there is an attractor parabolic sector. The boundary of this sector is on the
negative x-half axis and on the positive y-half axis and all the other orbits
of this parabolic sector arrive to the origin with slope (B − 1)/B. In the
third quadrant we have another hyperbolic sector and, finally in the fourth
quadrant we have a repeller parabolic sector. The boundary of this para-
bolic sector is again the x and y axes and all the other orbits of this sector
exit from the origin with slope (B − 1)/B. Furthermore, when B > 1 we
get that topologically the local phase portrait of the origin is the same as
the one for B ∈ (0, 1], but the separatrix of the sector which was on the
positive x-half axis now is inside the first quadrant with slope (B − 1)/B,
and the separatrix of the hyperbolic sector which was contained in the third
quadrant now is in the interior of this quadrant with slope (B − 1)/B.
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The eigenvalues of the Jacobian matrix at the singular point p3 is are

λ± = −1 +B +AB ±
√
∆

2(A+ 1)2

Since A,B > 0 we have that
√
∆ < |1 + B + AB| and so λ± < 0. Hence,

the point p3 is locally a stable node if ∆ ≥ 0 and is locally a stable focus if
∆ < 0. This concludes the proof of the proposition. □

3.3. Infinite equilibrium points.

Proposition 6. System (2) has three pairs of infinite equilibrium points:
the origin of the local chart U1 (denoted by q1) and its diametrally opposite
point, q2 = (−1/A, 0) (and its diametrally opposite point) and the origin of
the local chart U2 (denoted by q3) and its diametrally opposite point. The
infinite equilibrium point q1 is an unstable node, q2 is a saddle-node and q3
is formed by two hyperbolic and two parabolic sectors.

In the proof of the proposition we provide the explicit position of the
hyperbolic and parabolic sectors for q3.

Proof. System (2) on the local chart U1 becomes

u̇ = u(1 +Au+ (B − 1)v −Buv), v̇ = v(1 +Au− v).

The equilibrium points on v = 0 are the solutions of u(1 + Au) = 0 and so
we have two equilibrium points q1 = (0, 0) and q2 = (−1/A, 0).

Computing the eigenvalues of the Jacobian matrix at q1 we get that they
are 1, 1 and so q1 is an unstable node.

Computing the eigenvalues of the Jacobian matrix at q2 we get that they
are (0,−1) so the point q2 is semi-hyperbolic. Using [4, Theorem 2.19] we
conclude that q2 is a saddle-node. Indeed, translating the point q2 to the
origin and making a rescaling of time s = −τ we get the new system

u̇ = u+
−A+B +AB

A2
v −Au2 − −A+ 2B +AB

A
uv +Bu2v,

v̇ = v(v −Au),
(5)

where the dot means derivative in the new time s. In order to apply [4,
Theorem 2.19] we must pass the linear part of system (5) to its Jordan

normal form

(
−1 0
0 0

)
. This is made doing the linear change of variables

u = X − A(B − 1) +B

A2
Y, v = Y.
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In these new variables system (5) becomes

Ẋ = X −AX2 − B

A
XY +

(A+ 2)B(A(B − 1) +B)

A3
Y 2

− B(2B −A2 + 2AB − 2A)

A2
XY 2 +

B(A(B − 1) +B)2

A4
Y 3

Ẏ = −AXY +
(A+ 1)B

A
Y 2.

Applying [4, Theorem 2.19] we get that q2 is a saddle-node having the nodal
sector in the local chart U1 and the two hyperbolic sectors in the local chart
V1.

Now we compute system (2) on the local chart U2 and we obtain

u̇ = u(−Au+Bv − u2 + (1−B)uv), v̇ = B(1− u)v2.

We only need to study the origin of the local chart U2 which we denote by

q3. Note that the Jacobian matrix evaluated at q3 is

(
0 0
0 0

)
and so the

point is linearly zero. We need to apply the blow-up technique. To do so,
let w = v/u and we get the equation

u̇ = u2(−A− u+Bw + (1−B)uw), ẇ = uw(A+ u− uw).

Reescaling by the independent variable (the time) by s = uτ we obtain the
system

u̇ = u(−A− u+Bw + (1−B)uw), ẇ = Bw(A+ u− uw),

where the dot means derivative in the new variable s. The unique equilib-
rium point over the straight line u = 0 is the origin which is a saddle because
their eigenvalues are ±A. Doing the blow-down process, going back through
the changes of variables and taking into account how is the flow on the in-
variant axes, we obtain that the origin of U2 is formed by two hyperbolic
sectors and two parabolic sectors. More precisely, in the first quadrant in the
plane (u, v) we have a hyperbolic sector, the separatrices are on the axes. In
the second quadrant we have a repeller parabolic sector whose separatrices
are on the axes, in the third quadrant we have hyperbolic sector and, finally,
in the fourth quadrant we have an attractor parabolic sector. □

3.4. Global phase portraits. From subsection 2.2 and Proposition 4 in
order to prove Theorem 1 we only need to determine the behaviour of the
separatrices of the hyperbolic sectors of the finite and infinite singular points,
i.e. where they born and where they die. Doing so we will have all the sepa-
ratrix skeleton adding one orbit in each canonical region, and consequently
we will have the global phase portraits of system (2). But taking into ac-
count the two invariant straight lines and the local phase portraits at all the
finite and infinite singular points, the place where born and die all the sep-
aratrices of the hyperbolic sectors is determined in a unique way for every
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one of the two cases in function of the parameter B either if 0 < B ≤ 1 or
if B > 1. In this way we obtain the 2 phase portraits in the Poincaré disc
of Figure 1. This completes the proof of Theorem 1.
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