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COMPLETELY INTEGRABLE DIFFERENTIAL
SYSTEMS ARE ESSENTIALLY LINEAR

JAUME LLIBRE1, CLAUDIA VALLS2 AND XIANG ZHANG3

Abstract. Let ẋ = f(x) be a Ck autonomous differential system
with k ∈ N ∪ {∞, ω} defined in an open subset Ω of Rn. Assume
that the system ẋ = f(x) is Cr completely integrable, i.e. there
exist n−1 functionally independent first integrals of class Cr with
2 ≤ r ≤ k. If the divergence of system ẋ = f(x) is non–identically
zero, then any Jacobian multiplier is functionally independent of
the n − 1 first integrals. Moreover the system ẋ = f(x) is Cr−1

orbitally equivalent to the linear differential system ẏ = y in a full
Lebesgue measure subset of Ω. For Darboux and polynomial in-
tegrable polynomial differential systems we characterize their type
of Jacobian multipliers.

1. Introduction and statement of results

Consider a Ck autonomous differential system

(1) ẋ = f(x), x ∈ Ω ⊂ Rn,

where k ∈ N ∪ {∞, ω}, the dot denotes derivative with respect to
the independent variable t, Ω is an open subset of Rn, and f(x) =
(f1(x), . . . , fn(x)) ∈ Ck(Ω). Recall that N is the set of positive integers,
and C∞ and Cω are respectively the sets of infinitely smooth functions
and analytic functions.

A function H(x) is a first integral of system (1) if it is continuous and
defined in a full Lebesgue measure subset Ω1 of Ω, and it is not locally
constant on any positive Lebesgue measure subset of Ω1; moreover
H(x) is constant along each orbit of system (1) in Ω1. System (1) is Cr

completely integrable, if it has n − 1 functionally independent Cr first
integrals in Ω with 1 ≤ r ≤ k. Recall that k functions H1(x), . . . , Hk(x)
are functionally independent in Ω if their gradients ∇H1, . . . ,∇Hk have
rank k in a full Lebesgue measure subset of Ω.
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In this paper we denote by X the vector field associated to system
(1). We will use ∂i to denote the partial derivative with respect to
xi for i = 1, . . . , n. By convention Cr−1 = Cr if r = ∞ or ω; and
divX = divf = ∂1f1 + . . .+ ∂nfn.

A C1 function J is a Jacobian multiplier of system (1) if it is defined
in a full Lebesgue measure subset Ω∗ ⊂ Ω, and satisfies

div(Jf) ≡ 0, i.e., X (J) = −JdivX , x ∈ Ω∗.

If system (1) is two dimensional, a Jacobian multiplier is called an
integrating factor.

We extend the usual ordering of N to the set N ∪ {∞, ω} as follows:
for all k ∈ N we have k < ∞ < ω. Two differential systems ẋ = f(x)
and ẏ = g(y) are Cr orbitally equivalent in a region M with 1 ≤ r ≤ ω
if there exists a Cr invertible transformation y = Φ(x) defined on M
such that Φ∗f ◦ Φ−1(y) = q(y)g(y), where Φ∗ is the tangent map of Φ
and q(y) is a non–vanishing scalar function defined on M.

The next is our first main result.

Theorem 1. Let ẋ = f(x) be the Ck autonomous differential system
(1) with k ∈ (N \ {1}) ∪ {∞, ω} defined in Ω. Assume that system
(1) is Cr completely integrable in Ω with 2 ≤ r ≤ k, divX ̸≡ 0, and
that the Lebesgue measure of the set of its singularities is zero. Let
H1(x), . . . , Hn−1(x) be n−1 functionally independent Cr first integrals.
Then the following statements hold.

(a) System (1) has always a Cr−1 Jacobian multiplier defined in a
full Lebesgue measure subset of Ω.

(b) If J(x) is a Cr−1 Jacobian multiplier of system (1), then J(x)
is functionally independent of H1(x), . . . , Hn−1(x).

(c) There exists a full Lebesgue measure subset Ω0 ⊂ Ω in which
system (1) is Cr−1 orbitally equivalent to the linear differential
system

(2) ẏ = y.

We remark that statement (a) is not new, it can be obtained from [20,
Theorem 1.1]. We include its proof here for completeness. Statement
(b) is new. Statement (c) generalizes and improves Theorem 1 of [11]
extending it from two dimensional differential systems to any finite
dimensional differential systems.

The flow box theorem states the existence of n − 1 functionally in-
dependent first integrals in a neighborhood of a regular point of the
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differential system ẋ = f(x) by making it diffeomorphic to the dif-
ferential system (ẏ1, ẏ2, . . . , ẏn) = (1, 0, . . . , 0). While Theorem 1 un-
der the assumptions of the existence of n − 1 functionally indepen-
dent first integrals and the divergence non–identically zero for the
Ck differential system ẋ = f(x) defined in an open subset Ω of Rn,
shows that the system is diffeomorphic to the linear differential system
(ẏ1, . . . , ẏn) = (y1, . . . , yn) in an open and dense subset of Ω.

We want to note that completely integrable differential systems de-
fined in an open subset Ω of Rn with divergence identically zero in
general cannot be diffeomorphic in an open and dense subset of Ω
to the linear differential system ẏ = y. For instance this is the case
of superintegrable Hamiltonian systems when n is even, due to the
Liouville–Arnold Theorem, see for more details [1, 2, 4, 12] and the
references therein.

In the next proposition we characterize the zero Lebesgue measure
subset mentioned in statement (c) of Theorem 1.

Proposition 2. Under the assumptions of Theorem 1, we can assume
without loss of generality that

D(x) = det

 ∂1H1(x) . . . ∂n−1H1(x)
...

...
...

∂1Hn−1(x) . . . ∂n−1Hn−1(x).

 ̸≡ 0.

Then the zero Lebesgue measure subset Ω \Ω0 of statement (c) of The-
orem 1 is

{x ∈ Ω|D(x) fn(x) divf(x) = 0} .

Theorem 1 shows the existence of Jacobian multipliers for completely
integrable differential systems. We now characterize the class of the
Jacobian multipliers of these integrable differential systems.

Let C[x] be the ring of all polynomials in the variables (x1, . . . , xn) =
x with coefficients in C. A function H(x) is of Darboux type if it is of
the form

fk1
1 (x) . . . fkr

r (x) exp

(
g(x)

h(x)

)
,

where fi, g, h ∈ C[x] with g and h coprime, and ki ∈ C for i = 1, . . . , r.
Recall that the notion of Darboux function was considered by Darboux
[8, 9] in 1878 for studying the existence of first integrals through in-
variant algebraic curves (or surfaces or hypersurfaces) of polynomial
differential systems. A Darboux first integral of the system ẋ = f(x)
is a first integral of Darboux type. A polynomial differential system
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ẋ = f(x) in Rn or Cn is Darboux integrable if it has n− 1 functionally
independent Darboux first integrals.

Let C(x) be the field of all rational functions in the variables x
with coefficients in C. A function is Liouvillian if it belongs to the
Liouvillian field extension of C(x), for more details on the Liouvillian
field extension see for instance [16]. A polynomial differential system
ẋ = f(x) in Rn or Cn is Liouvillian integrable if it has n−1 functionally
independent Liouvillian first integrals.

Our next result provides the class of functions where belong the
Jacobian multipliers of an integrable polynomial differential system.

Theorem 3. Assume that system (1) with f = (f1, . . . , fn) is an
n–dimensional polynomial differential system with f1, . . . , fn relative-
ly prime. Then the following statements hold.

(a) If system (1) is Liouvillian integrable, then it has a Darboux
Jacobian multiplier.

(b) If system (1) is Darboux integrable, then it has a rational Jaco-
bian multiplier.

(c) If system (1) is polynomial integrable, then it has a polynomial
Jacobian multiplier.

Statement (a) with n = 2 is due to Singer [16], Christopher [6]
provided a different proof, see also [7, 14]. Statement (a) with n > 2
was proved recently by Zhang in [19]. We include this statement here
for completeness. Statement (b) was proved in [5] for n = 2. The proof
of statement (c) with n = 2 follows from [5, 10].

This paper is organized as follows. In the next section we will prove
our results. In section 3 we present an application of Theorem 1.

2. Proof of the main results

For proving Theorem 1 we need the following results. The first one
is due to Olver see [13, Theorem 2.16], it reveals the essential property
of functional dependence.

Theorem 4. Assume that M ⊂ Rn is a C∞ manifold, and g1, . . . , gk
are real C1 functions on M . Then g1, . . . , gk are functionally dependent
on M if and only if for all x ∈ M , there exists a neighborhood U of x
and a C1 real function F (z1, . . . , zk) in k variables such that

F (g1(x), . . . , gk(x)) ≡ 0, x ∈ U.

The second result characterizes a first integral of system (1) in func-
tion of n− 1 functionally independent first integrals.
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Lemma 5. Assume that an n–dimensional C1 autonomous differential
system ẋ = f(x) has n − 1 functionally independent C1 first integrals
in Ω, namely H1(x), . . . , Hn−1(x). If H is a C1 first integral of system
(1) defined in an open subset Ω0 ⊂ Ω, then for any x0 ∈ Ω0 there exists
a neighborhood U0 ⊂ Ω0 of x0, and a C1 function Φ in n− 1 variables,
such that

H(x) = Φ(H1(x), . . . , Hn−1(x)), x ∈ Ω0.

Proof. The proof can be obtained from Theorem 4. See also for in-
stance, Theorem 2.17 of [13] or Proposition 3 of [21, Chapter 1]. �

The third result provides a method for constructing first integrals
using Jacobian multipliers.

Lemma 6. If J1(x) and J2(x) are Jacobian multipliers of system ẋ =
f(x) in Ω, then J1(x)/J2(x) is a first integral of the system in Ω \
{J2(x) = 0}.

Proof. The proof follows from direct calculations and it is easy, see for
instance [3]. �

We must mention that the idea of the proof of statement (a) of
Theorem 1 partially comes from [19, 20], and the proof of statement
(c) partially comes from [11].

Proof of Theorem 1. Since H1(x), . . . , Hn−1(x) are Cr first integrals of
system (1) in Ω, by definition we have

∂1H1f1 + . . .+ ∂n−1H1fn−1 + ∂nH1fn = 0,

...(3)

∂1Hn−1f1 + . . .+ ∂n−1Hn−1fn−1 + ∂nHn−1fn = 0.

Since H1, . . . , Hn−1 are functionally independent in Ω we can assume
without loss of generality that

D(H) := det (∂1H, · · · , ∂n−1H) ̸= 0, x ∈ Ω0 ⊂ Ω,

where Ω0 is a full Lebesgue measure subset of Ω, and

H := (H1, . . . , Hn−1)
T ,

∂iH := (∂iH1, . . . , ∂iHn−1)
T , i = 1, . . . , n.

where T denotes the transpose of a matrix
For i = 1, . . . , n− 1, set

Di(H) := det (∂1H, · · · , ∂i−1H, ∂nH, ∂i+1H, · · · , ∂n−1H) .
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Using Cramer’s rule to solve (3) with respect to f1, . . . , fn−1, we get

(4) fi(x) = −Di(H)

D(H)
fn(x), i = 1, . . . , n− 1.

It follows that

(5) D(H)(f1(x), . . . , fn−1(x)) = −(D1(H), . . . , Dn−1(H))fn(x).

Set

(6) Q(x) =
D(H)

fn(x)
.

It is clear that Q is defined in a full Lebesgue measure subset ΩQ ⊂
Ω0 ⊂ Ω, and is a Cr−1 function in ΩQ. Moreover we get from (5) that

(7) Di(H)(x) = −Q(x)fi(x), i = 1, . . . , n− 1.

We claim that Q(x) is a Jacobian multiplier of system (1) in Ω0. We
now prove this claim. It follows from (6) and (7) that

(8)
n−1∑
i=1

∂i(Qfi) + ∂n(Qfn) = −
n−1∑
i=1

∂iDi(H) + ∂nD(H).

Next we only need to prove the right hand side of (8) is identically
zero. Using the derivative of a determinant we get easily that

∂nD(H) =
n−1∑
i=1

det (∂1H, . . . , ∂i−1H, ∂n∂iH, ∂i+1H, . . . , ∂n−1H) ,

∂iDi(H) = det (∂1H, . . . , ∂i−1H, ∂i∂nH, ∂i+1H, . . . , ∂n−1H)

+
n−1∑

j=1,j ̸=i

det (∂1H, . . . , ∂j−1H, ∂i∂jH, ∂j+1H, . . . , ∂i−1H,

∂nH, ∂i+1H, . . . , ∂n−1H) .

Hence we have

∂nD(H)−
n−1∑
i=1

∂iDi(H)

= −
n−1∑
i=1

n−1∑
j=1,j ̸=i

det (∂1H, . . . , ∂j−1H, ∂i∂jH, ∂j+1H, . . . , ∂i−1H,

∂nH, ∂i+1H, . . . , ∂n−1H)

= 0,
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because in the last equality we have used the fact that

det (∂1H, . . . , ∂j−1H, ∂i∂jH, ∂j+1H, . . . , ∂i−1H, ∂nH, ∂i+1H, . . . , ∂n−1H)

+ det (∂1H, . . . , ∂j−1H, ∂nH, ∂j+1H, . . . , ∂i−1H, ∂j∂iH, ∂i+1H, . . . , ∂n−1H)

= 0.

Now it follows from (8) that

n−1∑
i=1

∂i(Qfi) + ∂n(Qfn) ≡ 0.

That is Q(x) is a Jacobian multiplier, and consequently statement (a)
follows.

For proving (b) we first prove that Q(x) is functionally independent
of H1(x), . . . , Hn−1(x). Since

A := det


∂1Q · · · ∂n−1Q ∂nQ
∂1H1 · · · ∂n−1H1 ∂nH1
...

...
...

...
∂1Hn−1 · · · ∂n−1Hn−1 ∂nHn−1

 =
n∑

i=1

∂iQQ∗
i ,

where Q∗
i = (−1)1+iM1i with M1i the minor defined to be the determi-

nant of the (n − 1) × (n − 1)–matrix that results from the matrix by
removing the first row and the ith column. Clearly

D(H) = M1n, Di(H) = (−1)n−1−iM1i, i = 1, . . . , n− 1.

So we have

A =
n−1∑
i=1

∂iQ(−1)nDi(H) + ∂nQ(−1)n+1D(H)

=
n−1∑
i=1

∂iQ(−1)n(−Qfi) + ∂nQ(−1)n+1Qfn = (−1)n+1QX (Q),

where in the second equality we have used (6) and (7). Recall that X
is the vector field associated to system (1).

Since Q is not a first integral of system (1), it follows that X (Q) =
QdivX is a nonzero function on ΩQ. This implies that A can on-
ly vanish in a zero Lebesgue measure subset of Ω. This shows that
Q,H1, . . . , Hn−1 are functionally independent on Ω.

By assumption J(x) is a Cr−1 Jacobian multiplier, then by Lemma
6 we obtain that Q/J is a first integral of system (1). Then we get
from Lemma 5 that Q/J can be locally expressed as

(9) Q/J = Φ(H1, . . . , Hn−1),
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where Φ is a C1 function. If J is functionally dependent ofH1, . . . , Hn−1,
we get from Theorem 4 that J can be locally expressed as a C1 function
of H1, . . . , Hn−1. This together with (9) shows that Q is functionally
dependent of H1, . . . , Hn−1, a contradiction. This proves that J is func-
tionally independent of H1, . . . , Hn−1, so statement (b) follows.

By statement (a) system (1) has a Cr−1 Jacobian multiplier J(x).
From (b) it follows that the functions J, H1, . . . , Hn−1 are functionally
independent. So there exists a full Lebesgue measure subset Ω0 ⊂ Ω
such that∇J, ∇H1, . . . ,∇Hn−1 have rank n at all points of Ω0. Taking
the invertible change of variables

yn = J(x), yi = J(x)Hi, i = 1, . . . , n− 1, x ∈ Ω0,

we have

ẏn = J̇ = Jdivf = yn divf,

ẏi = J̇Hi + JḢ = J̇Hi = JdivfHi = yi divf.

This proves that system (1) is Cr−1 orbitally equivalent to the linear
system (2). Hence statement (c) follows. This completes the proof of
the theorem. �

Proof of Proposition 2. We note that D(x) = D(H)(x). The latter was
defined in the proof of Theorem 1. By assumption it follows that D(x)
is a C1 function and does not vanish on a full Lebesgue measure subset
of Ω. From (4) of the proof of Theorem 1 we have that fn(x) does not
vanish on a full Lebesgue measure subset of Ω. Otherwise all fi’s are
almost zero, and so system (1) has a positive Lebesgue measure subset
of singularities, a contradiction.

Choose the Jacobian multiplierQ = D(x)/fn(x), then from the proof
of Theorem 1 we get that

det


∂1Q · · · ∂nQ

∂1(QH1) · · · ∂n(QH1)
...

...
...

∂1(QHn−1) · · · ∂n(QHn−1)

 = (−1)n+1QnX (Q)

= (−1)n+1

(
D(x)

fn(x)

)n+1

divX .

This shows that the transformation from system ẋ = f(x) to ẏ = y
defined by

y1 = Q(x)H1(x), . . . , yn−1 = Q(x)Hn−1(x), yn = Q(x),
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is a Cr−1 diffeomorphism on Ω0 := {x ∈ Ω : D(x) fn(x) divX (x) ̸= 0}.
Obviously Ω\Ω0 = {x ∈ Ω : D(x) fn(x) divX (x) = 0} is a zero Lebesgue
measure subset of Ω. This proves the proposition. �
Proof of Theorem 3. Recall that statement (a) was proved in [16, 19].
We now prove statements (b) and (c).

Let H1(x), . . . , Hn−1(x) be n− 1 functionally independent Darboux
first integrals of the polynomial differential system (1). Taking Gi(x) =
logHi(x), i = 1, . . . , n− 1. Then G1(x), . . . , Gn−1(x) are also function-
ally independent first integrals of system (1).

We assume without loss of generality that

G(x) := det

 ∂1G1(x) · · · ∂n−1G1(x)
...

...
...

∂1Gn−1(x) · · · ∂n−1Gn−1(x)

 ,

is not zero in Rn except perhaps a zero Lebesgue measure subset. Then
we get from the proof of Proposition 2 that fn ̸= 0 in a full Lebesgue
measure subset of Ω. Since Hi(x) is a Darboux function, we assume
that it is of the form

Hi(x) = gki1i1 . . . g
kiri
iri

exp

(
qi(x)

hi(x)

)
,

where gij, qi, hi are polynomials, and kij ∈ C, j = 1, . . . , ri. Computing
the partial derivative of Gi(x) = logHi(x) with respect to xs for s =
1, . . . , n, we get

∂sGi(x) =

ri∑
j=1

kij
∂sgij
gij

+
hi∂sqi − qi∂shi

h2
i

.

This is a rational function. So G(x) is also a rational function.
By Theorem 1 and its proof it follows that system (1) has the rational

Jacobian multiplier Q(x) = G(x)/fn(x), because fn is a polynomial.
Hence statement (b) follows.

Finally we prove statement (c). Let H1, . . . , Hn−1 be n− 1 function-
ally independent polynomial first integrals of the polynomial differen-
tial system (1). Here we will use the notations defined in the proof
of Theorem 1. We assume that D(H) := det (∂1H, · · · , ∂n−1H) ̸= 0
in Rn except perhaps a zero Lebesgue measure subset. Recall that
H = (H1, . . . , Hn−1)

T and ∂iH = (∂iH1, . . . , ∂iHn−1)
T , i = 1, . . . , n.

The proof of Theorem 1 shows that

D(H)(f1(x), . . . , fn−1(x)) = −(D1(H), . . . , Dn−1(H))fn(x).

SinceD(H), D1(H), . . . , Dn−1(H) are polynomials, and f1(x), . . . , fn(x)
are relatively prime polynomials, it verifies that fn(x) divides D(H)(x).
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Hence system (1) has the polynomial Jacobian multiplier

Q(x) = D(H)(x)/fn(x).

This proves statement (c), and consequently the theorem. �

3. An application of Theorem 1

Consider the differential system

(10) ẋ = −y − z, ẏ = x, ż = xz,

which is the only completely integrable case of the Rössler differential
system constructed by Rössler [15] in 1976. This unique integrable
Rössler differential system was first proved in [18]. Recently system
(10) was studied from the Poisson dynamics point of view, see [17].

We can check that system (10) has the two functionally independent
first integrals

H1(x, y, z) =
1

2
(x2 + y2) + z, H2(x, y, z) = e−yz,

and the Jacobian multiplier J = e−y. We can check that the transfor-
mation of variables
(11)
u = J(x, y, z), v = J(x, y, z)H1(x, y, z), w = J(x, y, z)H2(x, y, z),

is invertible in the region Ω0 := {(x, y, z) ∈ R3|x ̸= 0}, because the
Jacobian determinant of this transformation is xe−4y. By Theorem 1,
system (10) is transformed to

u̇ = u, v̇ = v, ẇ = w,

via the change of variables (11) in Ω0. We note that the divergence of
system (10) is x.
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