

The Completely Integrable Differential Systems are Essentially Linear Differential Systems

Jaume Llibre · Claudia Valls · Xiang Zhang

Received: 4 September 2014 / Accepted: 28 February 2015 / Published online: 13 March 2015 © Springer Science+Business Media New York 2015

Abstract Let $\dot{x} = f(x)$ be a C^k autonomous differential system with $k \in \mathbb{N} \cup \{\infty, \omega\}$ defined in an open subset Ω of \mathbb{R}^n . Assume that the system $\dot{x} = f(x)$ is C^r completely integrable, i.e., there exist n-1 functionally independent first integrals of class C^r with $2 \le r \le k$. As we shall see, we can assume without loss of generality that the divergence of the system $\dot{x} = f(x)$ is not zero in a full Lebesgue measure subset of Ω . Then, any Jacobian multiplier is functionally independent of the n-1 first integrals. Moreover, the system $\dot{x} = f(x)$ is C^{r-1} orbitally equivalent to the linear differential system $\dot{y} = y$ in a full Lebesgue measure subset of Ω . Additionally, for integrable polynomial differential systems, we characterize their type of Jacobian multipliers.

Keywords Differential systems · Completely integrability · Orbital equivalence · Normal form · Jacobian multiplier · Polynomial differential systems

Mathematics Subject Classification 34A34 · 34C20 · 34C14

Communicated by Anthony Bloch.

J. Llibre

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain e-mail: jllibre@mat.uab.cat

C. Valls (⋈)

Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal e-mail: cvalls@math.ist.utl.pt

X. Zhang

Department of Mathematics, MOE–LSC, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China e-mail: xzhang@sjtu.edu.cn

