THE CO-CIRCULAR CENTRAL CONFIGURATIONS
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ABSTRACT. Chenciner in 2001 asked: Is the regular n—gon with equal masses
the unique central configuration such that all the bodies lie on a circle, and
the center of mass coincides with the center of the circle? This question has
a positive answer for n = 3. Hampton in 2003 proved that also this question
has a positive answer for n = 4. Here we provide a positive answer for n = 5.

1. INTRODUCTION

The main problem of the classical Celestial Mechanics is the n-body problem; i.e.
the description of the motion of n particles of positive masses under their mutual
Newtonian gravitational forces. This problem is completely solved only when n = 2,
and for n > 2 there are only few partial results.

Consider the Newtonian n-body problem in the plane R?, i.e.

n

) m;(r; — T :
r; = E M, for 1=1,...,n.

J=1, j#i "ij
Here m; are the masses of the bodies, r; € R? are their positions, and Tij =
lr; — r;| are their mutual distances. The vector r = (rq,...,r,) € R?" is called

the configuration of the system. The differential equations are well-defined if the
configuration is of non—collision type, i.e. r;; # 0 when i # j.

The total mass and the center of mass of the n bodies are
1
M=mq+...+my, C:M(m1r1+~~+mnrn),

respectively. A configuration r is a central configuration if the acceleration vectors
of the bodies satisfy

(1) Z W—l—)\(ri—c):o, for i=1,...,n,
J=1, j#i K

Central configurations started to be studied in the second part of the 18th cen-
tury, there is an extensive literature concerning these solutions. For a classical
background, see the sections on central configurations in the books of Wintner [22]
and Hagihara [9]. For a modern background see, for instance, the papers of Albouy
and Chenciner [2], Albouy and Kaloshin [3], Hampton and Moeckel [11], Moeckel
[14], Palmore [17], Saari [18], Schmidt [19], Xia [23], ... One of the reasons why
central configurations are important is that they allow to obtain the unique ex-
plicit solutions in function of the time of the n—body problem known until now,
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the homographic solutions for which the ratios of the mutual distances between the
bodies remain constant. They are also important because the total collision or the
total parabolic escape at infinity in the n—body problem is asymptotic to central
configurations, see for more details Saari [18]. Also if we fix the total energy h
and the angular momentum c of the n—body problem, then some of the bifurcation
points (h, ¢) for the topology of the level sets with energy h and angular momentum
¢ are related with the central configurations, see Meyer [15] and Smale [20] for a
full background on these topics.

Moulton [16] proved that for a fixed mass vector m = (mq,...,m;) and a fixed
ordering of the bodies along the line, there exists a unique collinear central config-
uration, up to translation and scaling.

For an arbitrary given set of masses the number of classes of planar non-collinear
central configurations of the m—body problem has been only solved for n = 3.
In this case they are the three collinear and the two equilateral triangle central
configurations, due to Euler [7] and Lagrange [13] respectively. Recently, Hampton
and Moeckel [11] proved that for any choice of four masses there exist a finite
number of classes of central configurations. For five or more masses this result is
unproved, but recently an important contribution to the case of five masses has
been made by Albouy and Kaloshin [3].

A periodic solution (ry(t),...,r,(¢)) of the planar n—body problem of period
T and masses my,...,my is a choreography if (ri(t),ra(t),...,r,(t)) = (r(t +
T/n),r(t+2T/n),...,r,(t+T) =r(t)), i.e. all n bodies follow the same curve r(t)
with equal time spacing. In 2001 Chenciner [5] trying to answer the question: Do
there exist planar choreographies whose masses are not all equal? stated another
question: Is the reqular n—gon with equal masses the unique central configuration
such that all the bodies lie on a circle, and the center of mass coincides with the
center of the circle?

It is not difficult to show that this last question has a positive answer for n = 3.
In 2003 Hampton [10] proved that also this question has a positive answer for n = 4.
Up to now this question remained unsolved for n > 4. The goal of this paper is to
provide a positive answer for n = 5.

Our proof is analytic and in one step is a computer assisted proof. More precisely,
at some moment of the proof we need to compute the real roots of two polynomials
of degrees 70 and 172 in the interval (0,2). First we detect the exact number
of real roots of those polynomials in such interval using the Sturm method (see
[12] or [21]). This method is implemented in mathematica and Mapple. After we
compute such roots as many precision as we want using these mentioned algebraic
manipulators. Only one pair of these roots satisfy the equations of the co—circular
central configurations. Moreover, this pair has the exact expression given in (14).
On the other hand, there are other ways to justify that the computation of these real
roots do not offer any problem, because our polynomials have integer coefficients,
and they can be evaluated exactly on rational numbers, for more details see page
2641 of [1].

On the other hand, recently some authors studied in [4, 6] studied the central
configurations of the 4- and 5—body problem with all the bodies on a circle.
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2. CO-CIRCULAR CENTRAL CONFIGURATIONS

In this work a central configuration of the n—body problem satisfying that all
the masses are on a circle centered at the origin of coordinates and such that its
center of mass is located at the origin will be called simply co—circular.

It is well known that the set of all central configurations is invariant by rotations
and homothecies centered at the center of mass. So we can restricted our study on
the co—circular central configurations to the ones which are on the circle of radius
one centered at the origin of coordinates. Thus the position of the mass my, is given
by

(Ck, Sk) = (COS Qk, sin Gk),
with 6, € [0,27) and 6; # 6, if ¢ # j. The angles of a such co—circular central
configuration will be denoted by

{61,...,0,},
and without loss of generality we can assume that
0<60; <0, <...<0, <2m.

These angles 6 are measured in counterclockwise sense with origin at the positive
T—axis.

The equations for the central configurations (1) restricted to the co—circular ones
become

_ m;(¢; — ¢i) _
e; = | ;¢- 7“%- + Ac; =0,
J=1, 37
(2) N ( )
mj(s; — s
€itn = Z —l— + Xs; = 0,
=tz W

for i = 1,...,n where r;; = \/(c; — ¢;)2 + (s; — s;)?, and additionally

n
€on4+1 = E m;c; = O,

j=1
n
€on42 = ijSj = 0,
j=1
Proposition 1. Let cc = {61,...,0,} be a co—circular central configuration. Then

the following statements hold.

(a) The configuration cc, symmetric with respect to the xz—axis of the con-
figuration cc is also a co—circular central configuration. Moreover cc, =
{2 —0,,...,27 — 601 }.

(b) The configuration cc, symmetric with respect to the y—axis of the con-
figuration cc is also a co—circular central configuration. Moreover ccy =
{m—0s,m—0s_1,...,m—01,3m —0,,,3m —Op1,..., 31— 0541} if0< 0; <
<0 < T < b1 <. <0, <27,

Proof. If the configuration cc is (c1, 81, €2, $2, - - - , Cn, S ), then the configuration cc,
is (c1,—S1,¢2,—82,...,Cn, —Spn). Since cc satisfies the equations (2), then also cc,



4 J. LLIBRE AND C. VALLS

satisfies the equations (2). Therefore, cc, is a co—circular central configuration. It

is easy to check that cc, = {27 — 0,,,...,27 — 61 }. Hence statement (a) is proved.

Now the configuration ccy is (—c1, 51, —¢2, 82, ..., —Cp, 8p). Since cc satisfies the
equations (2), then also cc, satisfies the equations (2). Therefore, cc, is a co—circular
central configuration. It follows easily that cc, = {m — 85, m—05_1,...,m— 01,37 —
0ny3m —Op—1,...,3m — 0111 0 <0 < ... <0, <7< Osq1 <...<0, <2m.
This completes the proof of statement (b). O

3. CO-CIRCULAR CENTRAL CONFIGURATIONS FOR n =5
In all this section n = 5.

Theorem 2. For the 5-body problem the unique co—circular central configuration
is the reqular 5—gon with equal masses.

Proof. Since the co—circular central configurations are invariant for rotations with
respect to the origin of coordinates, and for symmetries with respect to the z—
axis and to the y—axis, we can assume without loss of generality that we have a
co—circular central configuration cc = {61, 02, 03,804,065} such that
cs =Co, S5=—58,<0, ¢, >0 and my > ms.

More precisely, first we localize the biggest mass and we call it m;. After we rename
the masses in counterclockwise starting with m;. We rotate the co—circular central
configuration and we put it so that s5; = —sg with so > 0. If ma < ms we do a
symmetry with respect to the x—axis, and the new co—circular central configuration
is renamed in counterclockwise starting again with mi. So we obtain mo > ms.

Note that if the co-circular central configuration is invariant with respect to the
x-axis, then ; = 0 and 03 = —64. Thus s; =0, ¢; = 1, s3 = —s4 and c3 = ¢4.
This will be used later on.

Using that the center of mass is at the origin of the circle we get

(3)

Cq =

mic1 + (m2 + ms)ca + macy m1s1 + (ma — ms5)sy + mgss

— and s4 = — .
My my

The scheme of the proof is the following. We shall divide the proof in two cases,
and each one of these cases in some subcases. We shall see that the subcase 1.2 will
provide the co—circular central configuration formed by the regular 5—gon with equal
masses at the vertices, and that all the other subcases do not provide co—circular
central configurations.

Case 1: my1s1 + (ma —ms5)se = 0. We consider two subcases.

Subcase 1.1: moy > ms. Hence
mys — M2

(4) §1 = ———S2.

mi
Since so > 0 and mo > ms5 we get that s; < 0. Moreover we have that

S4 = ——83.

my
Therefore, again s3 > 0 and consequently s4 < 0. Hence (ma — ms5)ss + msss # 0.
Now we solve the system

C?+S?:]. for j7=1,4,
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with respect to the variables s; and c¢;. It has two different solutions R/ =
{cl7j7817j} for j = 1,2 with

s11 = =555 ((miD? + DY (D} + D§ — m3) — DuS1),
13

ey = —%(Dz(mi + D2+ D2 —m2) + 1),

s12 = =555 (miD? 4+ DY(D} + D — m?) + DaS1).
1473

c12 = —%(DQ(TR% + D} + D3 —mj) — S1),

being
D, = (m2 — m5)82 +mgs3, Do =cgmg+ 02(m2 =+ m5), D5 = QTTL% (D% + Dg)

and

$1 =/ D2(2m?(D? + D3 +m3) — (m} + D + D3 — m3)).

It follows from Proposition 1(a) that the configuration cc, symmetric with re-
spect to the x—axis of the co—circular central configuration cc is also a co—circular
central configuration. Then either the solution cc is invariant with respect to the
T-axis, or

(5) a1 = 0172‘32%732, S3——S3 and S1,1 = _81’2|52~>752, s3——s3’

In the first case as it was before mentioned this implies in particular that s; = 0,
in contradiction with the fact that we are under the assumptions of Subcase 1.1.
Hence (5) holds. Then we get the conditions S; = 0 and D2S; = 0, respectively.

So S1 = 0. Since D1 > 0 we get that
2m2(D? 4 D3 +m3?) — (m} + D? + D3 —m3) = 0.

Solving with respect to m; we get four possible solutions that we call them m ;
for 7 =1,2,3,4:

mi; = (—1)Jm4 — 14/ D% + Dg and mij+2 = (—1)jm4 + \/D% + D%, j = 172

Since m, is positive, solution mi,; is never satisfied. So, we consider only m o,
miy3 and mia4.

If m; = my 2 we have that

(mg — ms)s2 + m3s3
VD3 + D3
Note that due to (4) we have that s; < 0. Then sy > 0 in contradiction with the

fact that in subcase 1.1 we have that s; < 0. So the solution m; = mj 2 is not
possible.

S1 = —84

If m; = m, 3 we obtain that

(m2 — m5)32 + ms3S3 c3ms + (m2 + m5)02

§1=84=— , 1 =c4=—
Y VDI + D3 L VDI + D3

This implies that there is a collision between the masses m, and my, a contradiction.
Hence the solution m; = m 3 is not possible.
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If m1 = mq 4 we get that
(mg — ms)sy + mgss
v/D? + D3

Therefore the solution m; = m; 4 is not possible following the same arguments of
the solution m; = my 2. This completes the proof of subcase 1.1 showing that under
the assumptions of this subcase there are no co—circular central configurations.

S§1 = —84 = —

Subcase 1.2: my = ms. Then, since mis; + (ma — ms)ses = 0 we have that s; = 0.
Then ¢; = 1. Then r15 = r12. Moreover, we have that

mi + 2m202 —+ mscs ms
(6) g =— and s4=———s3.
my my
This last equality implies that s3 > 0 and s4 < 0.
Now equation eg = 0 of (2) reduces to
1 1
msss < - ) =0.
iy T
Therefore r14 = r13. Consequently ¢4 = ¢3 and s4 = —s3. So, from (6) we get that
my = mgz and my; = —2(coms + cz3ms). Note that c3 < 0 due to the fact that the

center of mass is at the center of the circle, i.e. at the origin of coordinates.

Clearly we have
T45 = T23, T35 =T24, T25= 282, T34 = 283.

Now from the ten equations (2) only equations e, = 0 for k = 1,3,7,8 remain
independent, because e; = 0 can be obtained from the linear combination mqe; +
2mges + 2moeg = 0, e4 = e3, e5 = €3, eg = 0, eg = —eg and e1g = —e7. From
e1 = 0 we obtain
2(c2—=1)my  2(c3—1)mg

3 3
T12 713

Substituting A in e = 0 for k = 3,7, 8 we obtain the equations

)\ =

fi= —riardyrdy — riardards — r1oT1ar3,Es 4 203,78, 4 T127Ta3s + 1Tar1373;
+r1977375, + 191375,

1
2(7’12 — 2)7“:1)’2(7”12 + 2)7’137’%37"5’4
—ma(riz — 2)175(r12 + 2)151/4 — 713(r23 — 724) (133 + 124723 + 134)
—(r12 = 2)(r12 + 2)\/4 — 1y ( — mariyrdyrds + mariyrd,ris
—2m2r13r§47“§3 - 2m3r13r§’4r§3 + m37“§2r137‘§’3 + mgrﬁrlgr&)),

1

= : 2M3T 19T 5aTa,T
T3 2r19(r13 — 2)r35(r1s + 2)rigrs, ( 3712723724713

3 .3
(2m27“137“237“24

f2

—marig\/4 — 11y (ris — 2)(r13 + 2)(ra3 — r24) (133 + T2ar23 + 75,)7%5
—(r13 —2)(r13 + 2)\/ 4 - 7’%3 (m2r12r§’3r§3 + m2r§2r§47“§3 - m2r§’3r§4r§3

3 .3 3 .3 3 .3
—2MariaTs, T3 — 2Mariary,ryg + m2r12r137“24)r13),



THE CO-CIRCULAR CENTRAL CONFIGURATIONS OF THE 5-BODY PROBLEM 7

respectively; where we have used that

1

02:7(277“%2), 03:5(277%3).

In what follows we shall omit the denominators from f5 and f3 because they cannot
be zero in a co—circular central configuration of the 5—body problem. For instance,
r13 cannot be 2, otherwise r14 would be also equal to 2, and we will have a collision
between the masses ms and my.

The system formed by the two equations fo = 0 and f3 = 0 is a homogeneous
linear system in the variables mo and mg. Since we are interested in positive
solutions for ms and mg, the determinant of this homogeneous linear system must
be zero, obtaining the equation

fa= 47"%2(7"13 - 2)7"%3 (r13 +2)y/4 — T137"S37’24 + 7"127"%3 (T%3rg3r12 47”137“237“5132

—r1ar8urSy + riar3arSrty — ArigrdarS ety 4+ drisrSyrty — risrSari,rds

47137837548y — 8rarSar Dy 4 3217518310y + 811578410y — 1ar3ar8 T,

F1671373375475y — 32rF318,18 + riar8ardyry — 1671375573,
1033841 Ts A Oia 384y — 81ar3a 8Ty + 75303,

— 6713753734750 + 81358334 rYy + 13arSarly — 8r8srSarly 4 320518y

—647737837 1y — 133047y + 810578 ly — 32138yl + 6r7yrsrS i,

_327“137"237"347"12 + 327‘137”237”347"12 + 647”137”247"12 67‘137"337"347"4112

+32r583 8,1ty — 32r13783r3, 1y + riardarSyrly — 32riyrdarS,rl,

+64r%3r§’3rg4ri”2 7”?3’”:()537'%47"12 + 327’137"237”347"12 647"137'237"347"%2

—4rY3r8arty + 32r§3rSarTy — 64riyrSarts + drfarSyrty, — 320038ty

+64715547 Ty — 817375310417 + 64rY5r3srS Ty — 12811373575, 77,

+8r 7378378,y — 64133853 rTy 4+ 12871378578, 1Ty — 4rSariarS i

+16r?3r§3rg4rlg + 327“‘1137“5’37“347“12 — 1287“f37“§31“g4r12 + 4r§3rg3r§4r12

—16r?3r33r§’4r12 — 327“113r33r§’4ﬁg + 1287“%37°g3r§’4r12 + 4r337"g4>

+V/4 =11, (4(7”12 — 2)riy(ri2 4 2)r35r9srS,

—(r12 — 2)r12(r12 + 2)(r1s — 2)ri3(ris + 2)v/4 — rig (= r§yr5,rSs

—1 9378418 + 2rlorS 8 4 2ria 8y r Sy + 2rdyrYarS rhs — 2riarisrSyrs,

—2rfyr1378,755 + 2rloriarSs 4 r10753r3, 85 — riariardyrSy — 2riartsri s
—T 1o 334785 + T1aT 137545 — 2rior1arSa Sy + 1100388 — Tiar a3,

_2T127“A113Tg47"33 T%zriﬂrgﬂm + 7”127“13TS4T23 27"127“137“34%3 + 27“127"157'34))

Note that no mass appears in the equations f; = 0 and f4 = 0 since they only
depend on the distances r12, 713, 723 and 794. Now we shall compute the distances
ro3 and ro4 in function of the distances r12 and ri3 using the Ptolemy’s Theorem,
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which says that if four masses mi, ms, m3 and my lie on a circle and are ordered
sequentially then

712734 + T14723 — 713724 = 0.
So we obtain that

(7) 7”24=T12\/4—7“%3+7“23.

Applying Ptolemy’s Theorem to the masses my, ms, ms and ms we get
T12735 + T15723 — r13725 = 0.

Therefore

1
ro3 = /4 — riyris — \/7’%3 + 5712 (\/4 - 7’%27‘13\/4 — 12 —ria (13, — 2))

Now we substitute ro3 and ro4 in the equations f; = 0 and f; = 0. Elevating
these two equations three times to the square we can eliminate all the squareroots,
obtaining two new equations g; = 0 and g4 = 0 having the solutions of f; = 0 and
fa = 0 and some additional solutions which are not solution of f; = 0 and f; = 0.
Thus, we have

g1 = —(r12 +113)°g51 912,
where
g1 = Ti5— 4r13r —4ri2 — 2r13r12 +drarid + 6r13r + 16r13r +4r19
817577y — 121937y — 8r1grly + 115l — 9rfsrly — 197151t — 12rf5r,
—12r 57y + 8r{3r7s + 32r{3r7y — 9rfsrfy + 6219579, — 28ri5r0,
8713170 4 8113775 — 48175775 + 611911y — 19r¥5r1y — 161957,
—2r13rfy — 1209378y + 32r{3rYy — dr{frf, + 16r{9r7, — 161557,

+47‘13T12 - 87“137’12 + 7‘13 - 47‘13 + 47‘13
The expression of the polynomial g5 is more than ten times longer than the poly-
nomial g11, and since it will not provide any solution of the system f; = 0 and
f1 =0, we do not write it. Moreover
g4 = —1i5(r12 — 113) Pris(riz + 713) 2 941942,

where the expression of the polynomial g4; is approximately two hundred times
longer than the expression of g1, and the expression of g4o is approximately six
hundred times longer than the expression of g1;. We do not provide these expres-
sions here. They are easy to obtain with the help of an algebraic manipulator as
mathematica or mapple.

Looking at the expressions of g; and g4, for computing the co—circular central
configurations we are only interested in the solutions of the system
911912 =0 ga1942 =0,

or equivalently in the solutions of the four systems

(9) 911 =0, g =0;

(10) g11 =0,  gaz = 0;

(11) g12 =10, ga1 =0;

(12) g12 =10, ga2=0.
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For solving each one of these system we do the following. Every g;; is a polynomial
in the variables 715 and rq3.

We restrict now our attention to solving the system (9). We define the polyno-
mials in one variable

p(ri2) = Resultant{gi1, ga1, m13),
q(r13) = Resultant|gi1, g41,712],

where Resultant[g11, g41, 713] denotes the resultant of the polynomials g1 and g4
with respect to the variable r13. This resultant is a polynomial in the variable r15.
By the properties of the resultant we have that if (75, 73) is a solution of system
(9), then 7, is a root of the polynomial p(ri2), and r}; is a root of the polynomial
q(r13). For more details on the resultant see for instance the book [8]. We have

p(ri2) = a(riz — 2)%713%(r12 4 2)%°(ry — 2)8(rly — 5135 + 5)prao(r12)psoa(ri2),
q(r13) = b(ris — 2)2°r135(r13 + 2)%(rf5 — 2)3(rls — 515 + 5)qra0(r13)q304(713),

where a and b are some positive integers, pi(r12) denotes a polynomial with integer
coefficients in the variable 12 of degree k, and ¢;(r13) denotes a polynomial with
integer coefficients in the variable r13 of degree I. We note that p140(r12) # g140(r12)
and that p3o4(r12) # g304(712), but the polynomials p140(), p3oa(x), qra0(x), g304()
depend on x through 22, i.e. are polynomials in the variable x2 of degrees 70 and
152.

Our co—circular central configurations satisfy that
(13) 0<rieo<rig<2.

So we only are interested in the real roots r7, and 775 of the polynomials p(r12)
and ¢(r13) which are in the interval (0, 2). Then we take all the pairs (r]y, r{3) with
riy < ri5 and we check if they are solutions of the system f; = 0 and f; = 0. Only
one of such pairs is solution of the mentioned system, namely the pair

(14) (g h) = <\/; (5—\/5)\/; (5+\/5)>.

In short, this is the unique solution of system (9) which is solution of the system
f1:0and f4=0

Now we study the solutions of systems (10), (11) and (12) in the same way that
we have studied the solutions of the system (9), but these systems do not provide
any solution satisfying f; = 0, f4 = 0 and (13). Hence the unique solution of the
system f; = 0 and f; = 0 satisfying (13) is the solution (14).

Finally we substitute the solution (14) in the equations fo = 0 and f3 = 0, where
previously we have substituted 94 and ro3 by their expressions (7) and (8), and we
obtain

=50 (14 V5) (mz —ms) =0 and 50 (=3 + V) (ma — m3) =0,

respectively. So mo = mg, and it follows that the five masses are all equal. This
completes the proof of subcase 1.2 showing that under the assumptions of this
subcase there is a unique co-circular central configuration given by the regular
5-gon with equal masses.
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Case 2: my1s1 + (mg —ms)sy # 0. Now we shall solve the system
c?—f—s?zl for j=3.,4,
with respect to the variables s3 and c3. It has two different solutions 77 =
{037‘7‘783’3‘} for j = 1,2 with
ms

$31= ~ 55 (Di(D2 +m3 —mj + D) — D5S5)

C31 = —%Z(Ds (Dg + mg — mi + Di) + SQ)

s3.0 = == (D} (D2 +m3 —m} + D3) + DsS5)
4176

C3,2 = —%Z(D5 (Dg + mg — mi + Di) — 52)

being
Dy =mqys1 + (mg - m5)52, Dy =cimq + 02(m2 + 7715)7 Dg = ng)(DZ + Dg)

and

S2= \/=DH(DE — (m3 — ma)? + D3)(DE — (ma +ma)? + D3).

It follows from Proposition 1(a) that the configuration cc, symmetric with respect
to the z—axis of the co—circular central configuration cc is also a co—circular central
configuration. Then, either the cc is invariant with respect to the z-axis, or

(15) C31 = 0372‘51%751, S2—r—s2 and 83,1 = —83,2

S1—>—S1, 82*)782.

In the first case as it was before mentioned this implies that s; = 0, ¢; = 1,
s4 = —s3 and ¢4 = —c3. Then s3 > 0 and s4 < 0. Moreover, since we are under
the assumptions of Case 2 and ms > ms, we must have my > ms. Using (3) we

get that

myg — M3
S§9g = ——S§

3.
m2 — Mg
Since so > 0 we must have my4 > ms. Note that now r14 = r13 and r15 = r12. Now

equation eg = 0 of (2) reduces to

(m3 —ma4)s3 (i - i) =0.

T2 Ti3
Therefore 13 = 712, which is not possible because we would have a collision between
the two masses mo and ms.
In short (15) must hold. Then we get the conditions S; = 0 and D5S; = 0,
respectively. So Sy = 0. Since in this case Dy # 0 we get that

(D2 — (m3 —ma4)® + D3)(D3 — (ms +m4)® + D) = 0.

Solving D2 — (ms3+my4)? + D3 = 0 with respect to m; we get two possible solutions
that we call them M ; for j =1,2:

My ;= —((mg + ms)crea + (Mo — ms)s182 + (_1)j+1\/ﬁ)7

for j = 1,2 where

N = ((m3 + m4)2 — (me + m5)2(:§)s% + 2(m§ - m§)01025152 + ((ms + m4)2

= (m2 = mz)*s3)cf.
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Solving D2 — (m3 —my)? + D3 = 0 with respect to m; we get two possible solutions
that we call them M, ; for j = 3,4:

My jr2 = —((ma +ms)cica + (ma — ms)s1s2 + (—1)7 1/ Ny),
for j = 1,2 where
_ 2 2 2.2 2 2 2
Ny = ((mg —myq)” — (mg +ms)=c3)sy + 2(m5 — mz)cicasise + ((ms — ma)
2

— (mg — ms)?s3)ct.

Note that mg3 # my otherwise D2 + D? cannot be zero, because Dy # 0.

We consider the four possible solutions M; 1, M 2, M; 3 and M 4.

If my = M,,; we have that

1
83 =84 = m((mz + ms)cicasy + (ms — ma)cisy + slx/N)7
1
3 =cC4 = )(f (ma + ms)cass + ((m27m5)5152+\/ﬁ)01).

(m3 4+ my

This implies that there is a collision between the masses ms and my, a contradiction.
Hence this solution is not possible.

If my = M, 2 we obtain that
) ((ma + ms)cicast + (ms — Ma)Ch sy — slx/ﬁ),

3 =c4 = — ] ((mg +ms)cosT + ((m5 — Mma)s182 + \/N)cl).

(m3 =+ my

As before this solution is not possible.

If my = M 3 we get that

S§3=—84 = m((mg +ms)eicasy + (ms —ma)cisy + 51 \/Nl),
1
cg=-cs1=—(—(m2+ ms)cass + c1 ((m2 — ms)s1s2 + v/ N1)).
(m3 —ma)

If (m2 — ms)sy + ms3sz = 0 then my > my, otherwise s3 = 0 because may > ms.

So s4 =0 and ¢3 = —1 and ¢4 = 1 in contradiction with the fact that 84, < 65. So
Mo — M5
§3 = —— S9.
ms3

Since ms > ms and so > 0 we get that s3 < 0. Then s4 > 0, in contradiction
with the fact that 64 > 63. Hence (mg — ms)sa + mgss # 0. Now, using the
same arguments than in subcase 1.1 it follows that m; must be one of the three
solutions m; ; for j = 2,3,4. Note that m; = my 3 is not possible because it implies
collision between m; and m4. When m; is equal to either m 2 or m; 4 we have that
s1 = —84 and ¢; = —cy4. Then, since s3 = —s4 and c3 = —c4 we have a collision
between the masses m; and ms, a contradiction. Hence the solution m; = M; 3 is
not possible.
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If my = M, 4 we have that
1

§3 = —S4 = m((MQ + m5)010251 + (77’L5 — mQ)C?SQ — S1V Nl),
1
3= —C4 = 7( — (mg +ms)cast + 01((m2 —ms5)s182 — VIV ))
(ms —ma)

Now the same arguments used in the solution m; = M 3 can be applied for the
solution m; = M, 4, obtaining that this last solution is not possible. This completes
the proof of the theorem. O
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