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Recently some interest has appeared for the periodic FitzHugh–Nagumo differential systems.
Here, we provide sufficient conditions for the existence of periodic solutions in such differential
systems.
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1. Introduction and Statements
of the Main Result

The FitzHugh–Nagumo (or FHN) differential sys-
tems are simplified models of the Hodgkin–Huxley
differential system which is a simpler mathematical
model for studying the nerve membrane [FitzHugh,
1961], see for more details the articles [Hodgkin &
Huxley, 1952; Nagumo et al., 1962; Murray, 1989;
Rinzel, 1981] and references therein.

In this work, we study the existence of peri-
odic solutions of the following periodic FitzHugh–
Nagumo differential system

dv

dt
= v̇ = −v(v − 1)(v − b(t)) − w + I(t),

dw

dt
= ẇ = av − cw.

(1)

Here v is the analog of the nerve membrane poten-
tial, w represents ion concentrations; I is an applied
current (stimulus current). This model (1) can be
considered as an extension of the FHN model,

because it includes a time-varying threshold given
by b(t) which corresponds, for example, to the
threshold between electrical silence and electrical
firing (see details in [Faghih et al., 2010; Brown
et al., 2001] and references therein). Also this model
includes a periodic forcing I(t). Periodical forcing
has been considered in [Kostova et al., 2004]. In this
paper, both functions b(t) and I(t) are T -periodic,
i.e. b(t+T ) = b(t) and I(t+T ) = I(t) for all t ∈ R.

The system with I and b constant has been
considered by several authors, for example, in
[Kalachev, 1993] using techniques from the ordinary
differential equations, and the possibility is ana-
lyzed for obtaining relaxation wave solutions and
also the asymptotic solution having the structure
of a relaxation wave.

The system (1) with I(t) periodic and b(t) con-
stant was considered in [Chou & Lin, 1996]. A
numerical study using the Poincaré map is done,
and in particular, the authors analyzed the conse-
quences of imposing a sinusoidal perturbation of the
form I0 + I cos γt on the base current. A similar
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