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PERIODIC MOTION IN NON–AXIALLY SYMMETRIC GALAXIES

JAUME LLIBRE1 AND CLAUDIO VIDAL2

Abstract. We apply the averaging theory for proving the existence of twelve families of

periodic orbits in a three-dimensional galactic Hamiltonian systems.

1. Introduction and statements of main results

In order to study the dynamics of the galaxies we need to have a model describing the
properties of their motion. Of course the information for obtaining the dynamical models of
the motion of the galaxies comes from observations. In order to simplify the dynamics of their
orbits these galactic models usually are axially symmetric or spherical. Spherical models for
galaxies were studied in [8, 12, 18]. Moreover, interesting axially symmetric galaxy models were
presented and studied in [1, 3, 4, 7, 10, 15, 16, 17, 19].

The potential of our model is

V (X,Y, Z) = − 1√
X2 + Y 2 + (a+

√
b2 + Z2)2

+
1

a+ b
, .

In this potential the gravitation constant and the mass of the galaxy is one taking conveniently
the unit of mass and of the distance, while a and b are parameters connected to the geometry
of the galaxy. When and b ≫ a the model describes an elliptical galaxy with a and b being the
scale–lengths of its semiaxes. See for more details about this potential the articles [5, 6, 11, 20].
The main reason for choosing this potential is that despite of the major part of the galaxies
are not exactly axially symmetric, the axial symmetry is a good approximation which simplifies
the computations for studying the motion of the galaxy.

Our main goal is to study analytically the periodic motion of the Hamiltonian system asso-
ciated to the Hamiltonian

(1) H =
1

2
(p2X + p2Y + p2Z)−

1√
X2 + Y 2 + (a+

√
b2 + Z2)2

,

where a > 0 and b > 0. We omit the term of the potential 1/(a + b) because it does not play
any role in the motion.
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2 J. LLIBRE AND C.VIDAL

The Hamiltonian system associated to the Hamiltonian (1) is

(2)

Ẋ = pX ,

Ẏ = pY ,

Ż = pZ ,

˙pX = − X

[X2 + Y 2 + (a+
√
b2 + Z2)2]3/2

,

˙pY = − Y

[X2 + Y 2 + (a+
√
b2 + Z2)2]3/2

,

˙pZ = − Z(a+
√
b2 + Z2)2√

b2 + Z2[X2 + Y 2 + (a+
√
b2 + Z2)2]3/2

.

As usual the dot denotes derivative with respect to the independent variable t ∈ R, the time.

In general the periodic orbits are the most simple orbits after the equilibrium points of a
differential system. Their study is interesting because the motion in their neighborhood can be
determined by their type of stability. For a given Hamiltonian system usually it is very difficult
to study analytically the existence of its periodic orbits and their kind of stability.

In order to apply the averaging theory to differential system (2), for studying analytically its
periodic solutions, we introduce a small parameter ε by scaling the variables (X,Y, Z, pX , pY , pZ) =
(
√
εx,

√
εy,

√
εz,

√
εpx,

√
εpy,

√
εpz). This change of coordinates is canonical, and developing in

these new variables the Hamiltonian (1) in Taylor series around ε = 0 we get

(3)

H =
1

2
(p2x + p2y + p2z)ε+

1

2(a+ b)3

(
x2 + y2 +

(a+ b)

b
z2
)
−

1

8(a+ b)5

[
3

(
x2 + y2 +

(a+ b)

b
z2
)2

+
a(a+ b)2

b3
z4

]
ε2 +O(ε3),

and the Hamiltonian system (2) becomes

(4)

ẋ = px,

ẏ = py,

ż = pz,

ṗx = − x

(a+ b)3
+

3

2(a+ b)5
x

(
x2 + y2 +

(a+ b)

b
z2
)

ε+O(ε2),

ṗy = − y

(a+ b)3
+

3

2(a+ b)5
y

(
x2 + y2 +

(a+ b)

b
z2
)

ε+O(ε2),

ṗz = − z

b(a+ b)2
+ z

3b2
(
x2 + y2

)
+ (a+ b)(a+ 3b)z2

2b3(a+ b)4
ε+O(ε2).

We proceed to study of the existence of periodic solutions of system (4). First we analyze
the solutions of system (4) with ε = 0, that is, the unperturbed Hamiltonian system

(5)

ẋ = pX , ṗX = − x

(a+ b)3
,

ẏ = pY , ṗY = − y

(a+ b)3
,

ż = pZ , ṗZ = − z

b(a+ b)2
,
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The solutions of this unperturbed system, which is a sum of three harmonic oscillators, with
arbitrary initial conditions x(0) = x0, y(0) = y0, z(0) = z0, px(0) = px0 , py(0) = py0 , pz(0) =
pz0 are

(6)

x(t) = x0 cosω1t+
1

ω1
px0

sinω1t,

px(t) = px0
cosω1t− ω1x0 sinω1t,

y(t) = y0 cosω1t+
1

ω1
py0

sinω1t,

py(t) = py0
cosω1t− ω1y0 sinω1t,

z(t) = z0 cosω2t+
1

ω2
pz0 sinω2t,

pz(t) = pz0 cosω2t− ω2z0 sinω2t,

where ω1 = (a+b)−3/2 and ω2 = b−1/2(a+b)−1. Since
ω2

ω1
=

√
a+ b

b
, then for the unperturbed

system the following statement hold:

(i) If

√
a+ b

b
is rational, then the set of all periodic solutions of system (5) has dimension

6 contained in R6.

(ii) If

√
a+ b

b
is irrational, then there are two sets of periodic solutions of system (5) one of

dimension 4 and the other of dimension 2. The first family is contained in the subspace
(x, y, 0, px, py, 0) and the second is contained in (0, 0, z, 0, 0, pz).

Now we are in position to state our main results.

The second result is generated using the periodic solutions on the subspace (x, y, 0, px, py, 0)
and is the following.

Theorem 1. If

√
a+ b

b
is irrational, then for ε > 0 sufficiently small at every level H =

h > 0 the perturbed Hamiltonian systems (4) has at least one periodic solution γ(t, ε) =
(x(t, ε), y(t, ε), z(t, ε), px(t, ε), py(t, ε), pz(t, ε)) with period T = 2π(a+ b)3/2 such that γ(0, ε) →
(
√

2(a+ b)3h, 0, 0, 0, 0, 0) as ε → 0.

Details of the proof of Theorem 1 will be given in section 2.

Theorem 2. If

√
a+ b

b
is irrational, then for ε > 0 sufficiently small at every level H =

h > 0 the perturbed Hamiltonian systems (4) has at least one periodic solution γ(t, ε) =

(x(t, ε), y(t, ε), z(t, ε), px(t, ε), py(t, ε), pz(t, ε)) with period T = 2π(a+ b)
√
b such that γ(0, ε) →

(0, 0, (a+ b)
√
2bh, 0, 0, 0) as ε → 0.

The proof of Theorem 2 will be given in section 3.

Both theorems are proved using the averaging theory described in the appendix. Unfortu-
nately this averaging theory does not provide any information about the periodic orbits (i) of
the unperturbed system (5) which can be continued to system (4).

2. Proof of Theorem 1

We consider the unperturbed periodic solutions defined in (6) with z = pz0 = 0, that is, we
take the periodic solution with four parameters
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γ0(t) =
(
x0 cos(ω1t) +

1

ω1
px0 sin(ω1t), y0 cos(ω1t) +

1

ω1
py0 sin(ω1t), 0,

px0
cos(ω1t)− ω1 x0 sin(ω1t), py0

cos(ω1t)− ω1y0 sin(ω1t), 0
)
,

with period T = 2π/ω1 = 2π(a + b)3/2 which are in the subspace (x, y, 0, px, py, 0). Note that
these periodic solutions are not in resonance with the other periodic solutions of system (5)
living in the subspace (0, 0, z, 0, 0, pz) due to the fact that ω1/ω2 is not a rational number by
assumptions. It is clear that the energy level of this family of periodic solutions with initial
conditions (x0, y0, 0, px0 , py0 , 0) and ε = 0 is

h =
1

2

(
ω2
1(x

2
0 + y20) + p2x0

+ p2y0

)
.

We are going to apply Theorem 3 of the appendix at every energy level H = h > 0, this will
allow to eliminate one variable, in our case it will be px, and to reduce the study in a space of
dimension five. Using the expression of H given in (3) we get

px =

√
2h−

b
(
(a+ b)3

(
p2y + p2z

)
+ x2 + y2

)
+ z2(a+ b)

b(a+ b)3
+

6b2z2(a+ b)
(
x2 + y2

)
+ z4(a+ b)2(a+ 3b) + 3b3

(
x2 + y2

)2
8b3(a+ b)5

√
b
(
(a+ b)3

(
2h− p2y − p2z

)
− x2 − y2

)
− z2(a+ b)

b(a+ b)3

ε+O(ε2).

We consider the following order of the variables (x, y, py, z, pz), it is verified that the equations
of motion (4) on the energy level H = h > 0 are given by

ẋ =

√
2h−

b
(
(a+ b)3

(
p2y + p2z

)
+ x2 + y2

)
+ z2(a+ b)

b(a+ b)3
+

6b2(a+ b)z2
(
x2 + y2

)
+ (a+ b)2(a+ 3b)z4 + 3b3

(
x2 + y2

)2
8b3(a+ b)5

√
b
(
(a+ b)3

(
2h− p2y − p2z

)
− x2 − y2

)
− z2(a+ b)

b(a+ b)3

ε+O(ε2),

ẏ = py,

ṗy = − y

(a+ b)3
+

3y

(
z2(a+ b)

b
+ x2 + y2

)
2(a+ b)5

ε+O(ε2),

ż = pz,

ṗz = − z

b(a+ b)2
+

(a+ b)(a+ 3b)z3 + 3b2z
(
x2 + y2

)
2b3(a+ b)4

ε+O(ε2).

This differential system has the normal form of system (8), so it is ready for applying to it
the averaging theory described in the appendix, i.e. the function F0(x, y, py, z, pz) is(√

2h−
b
(
(a+ b)3

(
p2y + p2z

)
+ x2 + y2

)
+ z2(a+ b)

b(a+ b)3
, py,−

y

(a+ b)3
+

3y

(
z2(a+ b)

b
+ x2 + y2

)
2(a+ b)5

, pz,−
z

b(a+ b)2
+

(a+ b)(a+ 3b)z3 + 3b2z
(
x2 + y2

)
2b3(a+ b)4

)
,
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and the function F1(x, y, py, z, pz) is(
6b2(a+ b)z2

(
x2 + y2

)
+ (a+ b)2(a+ 3b)z4 + 3b3

(
x2 + y2

)2
8b3(a+ b)5

√
b
(
(a+ b)3

(
2h− p2y − p2z

)
− x2 − y2

)
− z2(a+ b)

b(a+ b)3

, 0,

3y

(
z2(a+ b)

b
+ x2 + y2

)
2(a+ b)5

, 0,
(a+ b)(a+ 3b)z3 + 3b2z

(
x2 + y2

)
2b3(a+ b)4

)
.

In what follows we will use the notation of Theorem 3 given in the appendix, that is, k = 3,
n = 5, ξ(x, y, py, z, pz) = (x, y, py), α = (x0, y0, py0

), β(α) = (0, 0). So the initial condition
of the unperturbed periodic orbits of system (5) in the energy level H = h > 0 is xα =
(x0, y0, py0 , 0, 0). For each xα the solution x(t, xα) equal to(

x0 cos(ω1t) +
1

ω1
px0 sin(ω1t), y0 cos(ω1t) +

1

ω1
py0 sin(ω1t), py0 cos(ω1t)− ω1y0 sin(ω1t), 0, 0

)
is T =

2π

ω1
= 2π(a+ b)3/2-periodic. Let Mxα(t) be the fundamental matrix satisfying Mxα(0) is

the identity matrix, solution of the variational equation (10) along the periodic solution x(t, xα).
Then, Mxα

(t) is

cos(ω1t)− ω1
x0

px0

sin(ω1t) −ω1
y0
px0

sin(ω1t) − 1

ω1

py0

px0

sin(ω1t) 0 0

0 cos(ω1t)
1

ω1
sin(ω1t) 0 0

0 −ω1 sin(ω1t) cos(ω1t) 0 0

0 0 0 cos(ω2t)
1

ω2
sin(ω2t)

0 0 0 −ω2 sin(ω1t) cos(ω1t)


.

In order to apply Theorem 3 of the appendix we need to compute the matrix M−1
xα

(0) −
M−1

xα
(T ), which is

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2 sin2
(√

a+ b√
b

π

) √
b(a+ b) sin

(
2
√
a+ b√
b

π

)

0 0 0 −
sin

(
2
√
a+ b√
b

π

)
√
b(a+ b)

2 sin2
(√

a+ b√
b

π

)


.

It is clear that the upper right corner the 3 × 2 is the zero matrix, and in the lower right

corner we have a 2× 2 matrix ∆α with det ∆α = 4 sin2
(
π
√
a+ b√
b

)
̸= 0, because

√
b√

a+ b
is an

irrational number. Now we compute the averaged function defined in (11), i.e.

F(x0, y0, py0
) = ξ

(∫ 2π(a+b)3/2

0

M−1
xα

(t) F1(t, x(t, xα)) dt

)
= (f11, f12, f13),
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and we get

f11 =
3π

8
√
a+ b

[
(
−3px0

(a+ b)3
(
p2x0

+ p2y0

)
− 3px0

x2
0 − px0

y20 − 2py0
x0y0

)
]

f12 = − 3π

8
√
a+ b

[
(
py0

(
3(a+ b)3

(
p2x0

+ p2y0

)
+ x2

0

)
+ 2px0

x0y0 + 3py0
y20
)
]

f13 =
3π

8(a+ b)7/2
[
(
y0
(
(a+ b)3

(
p2x0

+ 3p2y0

)
+ 3x2

0

)
+ 2(a+ b)3px0

py0
x0 + 3y30

)
],

where px0
= ±

√
2h− p2y0

− x2
0 + y20

(a+ b)3
. Solving F(x0, y0, py0

) = 0, we obtain the two real solu-

tions x∗
0 = ±

√
2h(a+ b)3, y0 = py0 = 0. It is verified that the differential DF(x0, y0, py0) =

(dfij), where

df11 = − 3π

4
√
a+ b

py0y0 −
x0

(
3(a+ b)3h− y20

)
(a+ b)3

√
−
−
(
2h− p2y0

)
(a+ b)3 + x2

0 + y20
(a+ b)3

 ,

df12 = − 3π

4
√
a+ b

py0
x0 − 2y0

√
−
−
(
2h− p2y0

)
(a+ b)3 + x2

0 + y20
(a+ b)3

−
y0
(
3(a+ b)3h− y20

)
(a+ b)3

√
−
−
(
2h− p2y0

)
(a+ b)3 + x2

0 + y20
(a+ b)3

 ,

df13 = − 3π

4
√
a+ b

x0y0 −
py0

(
3(a+ b)3h− y20

)√
−
−
(
2h− p2y0

)
(a+ b)3 + x2

0 + y20
(a+ b)3

 ,

df21 = − 3π

4
√
a+ b

− y0x
2
0

(a+ b)3

√
−p2y0

+ 2h− x2
0 + y20

(a+ b)3

− 2py0
x0 + y0

√
2h− x2

0 + y20
(a+ b)3

− p2y0

 ,

df22 = −
3πx0

(
2h− x2

0 + y20
(a+ b)3

− p2y0

)
4
√
a+ b

√
2h− x2

0 + y20
(a+ b)3

− p2y0

,

df23 = − 3π

4
√
a+ b

3ha3 + 9bha2 + 9b2ha− x2
0 + 3b3h− py0

x0y0√
2h− x2

0 + y20
(a+ b)3

− p2y0

 ,
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df31 =
3π

8(a+ b)7/2

2py0

√
2h− x2

0 + y20
(a+ b)3

− p2y0
(a+ b)3 + 4x0y0 −

2py0
x2
0√

2h− x2
0 + y20

(a+ b)3
− p2y0

 ,

df32 =
3π

4(a+ b)7/2

(p2y0
+ h
)
(a+ b)3 + x2

0 + 3y20 −
py0

x0y0√
2h− x2

0 + y20
(a+ b)3

− p2y0

,



df33 =
3π

4
√
a+ b

−
x0p

2
y0√

2h− x2
0 + y20

(a+ b)3
− p2y0

+ 2y0py0
+ x0

√
2h− x2

0 + y20
(a+ b)3

− p2y0

 .

It is verified that the determinant (12) is not zero, i.e.

det(F(x0, 0, 0)) =
243π3h3x0(a+ b)3/2

64

√
2h− x2

0

(a+ b)3

.

Thus the determinant evaluated at x∗
0 = ±

√
2h(a+ b)3, which is different from zero, in fact, is

∞. Since both solutions generate the same periodic orbit, we conclude the proof.

3. Proof of Theorem 2

We consider the unperturbed periodic solutions defined in (6) with x0 = y0 = px0
= py0

= 0,
that is, we take the periodic solution with two parameters

γ0(t) = (0, 0, z0 cosω2t+
1

ω2
pz0 sinω2t, 0, 0, pz0 cosω2t− ω2z0 sinω2t),

and with period T =
2π

ω2
which is in the plane (0, 0, z, 0, 0, pz). Note that these periodic

solutions are not in resonance with the other periodic solutions of system (5) living in the
subspace (x, y, 0, px, py, 0) due to the fact that ω1/ω2 is not a rational number. It is clear that
the energy level of this family of periodic solutions with ε = 0 is

h =
1

2

(
ω2
2z

2
0 + p2z0

)
.

Again we apply Theorem 3 of appendix at every energy level H = h > 0, this allows to
eliminate one variable, now the variable pz, and we reduce the space of motion to dimension
five. Using the expression of H in (3) we get

pz =

√
2h−

b
(
(a+ b)3

(
p2x + p2y

)
+ x2 + y2

)
+ z2(a+ b)

b(a+ b)3
+

6b2z2(a+ b)
(
x2 + y2

)
+ z4(a+ b)2(a+ 3b) + 3b3

(
x2 + y2

)2
8b5/2(a+ b)7/2

√
b ((a+ b)3 (2h− px2 − py2)− x2 − y2)− z2(a+ b)

ε+O(ε2).
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We will consider the following order of the variables (z, x, px, y, py), it is verified that the
equations of motion (4) on the energy level H = h are given by

(7)

ż =

√
2h−

b
(
(a+ b)3

(
p2x + p2y

)
+ x2 + y2

)
+ z2(a+ b)

b(a+ b)3
+

6b2z2(a+ b)
(
x2 + y2

)
+ z4(a+ b)2(a+ 3b) + 3b3

(
x2 + y2

)2
8b5/2(a+ b)7/2

√
b
(
(a+ b)3

(
2h− p2x − p2y

)
− x2 − y2

)
− z2(a+ b)

ε+O(ε2),

ẋ = px,

ṗx = − x

(a+ b)3
+

3

2(a+ b)5
x

(
x2 + y2 +

(a+ b)

b
z2
)

ε+O(ε2),

ẏ = py,

ṗy = − y

(a+ b)3
+

3

2(a+ b)5
y

(
x2 + y2 +

(a+ b)

b
z2
)

ε+O(ε2).

This differential system has the normal form of system (8) for applying to it the averaging
theory of the appendix, where

F0(z, x, px, y, py) =

(√
2h−

b
(
(a+ b)3

(
p2x + p2y

)
+ x2 + y2

)
+ z2(a+ b)

b(a+ b)3
,

px,−
x

(a+ b)3
, py,−

y

(a+ b)3

)
,

and F1(z, x, px, y, py) is

( 6b2z2(a+ b)
(
x2 + y2

)
+ z4(a+ b)2(a+ 3b) + 3b3

(
x2 + y2

)2
8b5/2(a+ b)7/2

√
b
(
(a+ b)3

(
2h− p2x − p2y

)
− x2 − y2

)
− z2(a+ b)

, 0,

3

2(a+ b)5
x

(
x2 + y2 +

(a+ b)

b
z2
)
, 0,

3

2(a+ b)5
y

(
x2 + y2 +

(a+ b)

b
z2
))

.

In what follows we will use the notation of Theorem 3 given in the appendix, that is, k = 1, n =
5, ξ(z, x, px, y, py) = z, α = z0, β(α) = (0, 0, 0, 0), and zα = (z0, 0, 0, 0, 0) is the initial condition
of a periodic orbit of the unperturbed system (9) corresponding to system (7). For each zα the

solution x(t, zα) = (z0 cosω2t+
1

ω2
pz0 sinω2t, 0, 0, 0, 0) has period T =

2π

ω2
= 2π(a+ b)

√
b. Let

Mxα
(t) be the fundamental matrix of the variational equation (10) along the periodic solutions

x(t, zα) such that Mxα(0) is the identity matrix, . Then Mxz0
(t) is



cos(ω2t)− ω2
z0
pz0

sin(ω2t) 0 0 0 0

0 cos(ω1t)
1

ω1
sin(ω1t) 0 0

0 −ω1 sin(ω1t) cos(ω1t) 0 0

0 0 0 cos(ω1t)
1

ω1
sin(ω1t)

0 0 0 −ω1 sin(ω1t) cos(ω1t)


.
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Next in order to apply Theorem 3 of the appendix we compute the matrix M−1
xz0

(0)−M−1
xz0

(T ),

and we obtain

0 0 0 0 0

0 2 sin2

( √
bπ√

a+ b

)
(a+ b)3/2 sin

(
2
√
bπ√

a+ b

)
0 0

0 −
sin

(
2
√
bπ√

a+ b

)
(a+ b)3/2

2 sin2

( √
bπ√

a+ b

)
0 0

0 0 0 2 sin2

( √
bπ√

a+ b

)
(a+ b)3/2 sin

(
2
√
bπ√

a+ b

)

0 0 0 −
sin

(
2
√
bπ√

a+ b

)
(a+ b)3/2

2 sin2

( √
bπ√

a+ b

)



.

It is clear that the upper right corner the 1 × 4 is the zero matrix, and in the lower right

corner we have a 4 × 4 matrix ∆z0 with det ∆α = 16 sin4

(
π
√
b√

a+ b

)
̸= 0, because

√
b√

a+ b
is

an irrational number. Then we have

F(z0) = ξ

(∫ 2π(a+b)
√
b

0

M−1
xz0

(t) F1(t, x(t, xz0)) dt

)

= −
3πh(a+ b)2(a+ 3b)

√
2h− z20

b(a+ b)2

4
√
b

.

Solving F(z0) = 0 we obtain the two solutions z0 = z∗0 = ±(a + b)
√
2bh, for which we have

pz0 = 0. It is verified that the derivative F ′(z0) =
3πhz0(a+ 3b)

4b3/2

√
2h− z20

b(a+ b)2

, which is different

from zero at z0 = z∗0 , in fact, it is ∞. Since both values of z0 generate the same periodic orbit,
we conclude the proof.

Appendix: Averaging theory of first and second order

In this section we recall the averaging theory of first order to find periodic orbits, for more
information on the general averaging theory see the book [14].

Consider the differential system

(8) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε > 0 sufficiently small, x ∈ Ω, where Ω is an open subset of Rn, and t ≥ 0. Moreover, we
assume that both F0, F1 and F2 are C2 functions and T -periodic in the first variable.

Let x(t, z) be the solution of the unperturbed system

(9) ẋ = F0(t,x),

such that x(0, z) = z.

We write the linearization of the unperturbed system along the periodic solution x(t, z) as

(10) ẏ(t) = DxF0(t,x(t, z))y.
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Now we denote by Mz(t) some fundamental matrix of the linear differential system (10), and
by ξ : Rk ×Rn−k −→ Rk, the projection of Rn onto its first k coordinates; i.e., ξ(x1, . . . , xn) =
(x1, . . . , xk).

Theorem 3 (First Order Averaging Theorem). Let V ⊂ Rk be open and bounded, and let
β0 : CL(V ) −→ Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β0(α)), α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the solution x(t, zα)
of (9) is T - periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα
(t) of (10) such that the matrix

M−1
zα

(0) − M−1
zα

(T ) has in the upper right corner the k × (n − k) zero matrix, and in
the lower right corner a (n− k)× (n− k) matrix ∆α with det ∆α ̸= 0.

We consider the function F(α) : Cl(V ) → Rk

(11) F(α) = ξ

(∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ V with F(a) = 0 and

(12) det((dF/dα(a)) ̸= 0,

then there is a T–periodic solution x(t, ε) of system (8) such that x(0, ε) → a as ε → 0.

For an easy proof of Theorem 3 see [2]. In fact the result of Theorem 3 is a classical result
due to Malkin [9] and Roseau [13].
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