QUALITATIVE BEHAVIOUR OF THE FLOW OF THE n-BODY PROBLEM IN THE ZERO ENERGY LEVEL

JAUME LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona 08193, Bellaterra, Barcelona, Spain.

E-mail: jllibre@mat.uab.es

and

JÖRG WALDVOGEL

Seminar für Angewandte Mathematik, ETH-Zentrum CH-8092, Zürich, Schweiz

E-mail: walvoge@sam.math.ethz.ch

ABSTRACT

In this note we summarize some recent techniques and results on the singularities in the equations of motion of a class of classical mechanical systems. We use these geometric techniques to give a characterization of the global behaviour of the solutions of the flow on the zero energy level for this class of classical mechanical systems which contain the gravitational n-body problem.

1. Introduction

Newton's equation may be written

$$\dot{q} = M^{-1}p, \quad \dot{p} = -\nabla V(q), \tag{1}$$

with $q = (q_1, \ldots, q_n)^t$ and $p = (p_1, \ldots, p_n)^t$, where $q_i, p_i \in \mathbb{R}^d$ are the position and momentum of the body with mass m_i . Here q is a point in Q, an open subset of \mathbb{R}^{nd} , and the potential energy function $V: Q \to \mathbb{R}$ is real analytic, homogeneous of degree -k (i.e., $V(rq) = r^{-k}V(q)$ for all $r \in \mathbb{R}$), and has an isolated singularity at the origin. The mass matrix M is a diagonal matrix with positive entries $m_1, \ldots, m_1, \ldots, m_n, \ldots, m_n$. Each mass appears exactly d times. Q is called the configuration space and $Q \times \mathbb{R}^{nd}$, the phase space of system (1). On the phase space our system is a first order system of differential equations or a vector field.

System (1) may be written in Hamiltonian form by introducing the Hamiltonian or total energy function

$$H(q,p) = \frac{1}{2}p^{t}M^{-1}p + V(q).$$
 (2)