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GLOBAL PHASE PORTRAITS OF QUADRATIC

SYSTEMS WITH AN ELLIPSE AND A STRAIGHT

LINE AS INVARIANT ALGEBRAIC CURVES

JAUME LLIBRE AND JIANG YU

Abstract. In this paper we study a new class of integrable qua-
dratic systems and classify all its phase portraits. More precisely,
we characterize the class of all quadratic polynomial differential
systems in the plane having an ellipse and a straight line as invari-
ant algebraic curves. We show that this class is integrable and we
provide all the different topological phase portraits that this class
exhibits in the Poincaré disc.

1. Introduction and statement of the main results

A planar polynomial differential system is a differential system of the
form

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P and Q are real polynomials. We say that the polynomial
differential system (1) has degree n, if n is the maximum of the degrees
of the polynomials P and Q. Usually a polynomial differential system

of degree 2 is denoted simply as a quadratic system. The dot in (1)
denotes derivative with respect to the independent variable t.

Let U be a dense and open subset of R
2. A non–locally constant

function H : U → R is a first integral of the differential system (1) if
H is constant on the orbits of (1) contained in U , i.e.

dH

dt
=

∂H

∂x
(x, y)P (x, y) +

∂H

∂y
(x, y)Q(x, y) = 0

in the points (x, y) ∈ U . We say that a quadratic system is integrable

if it has a first integral H : U → R.

Quadratic systems have been studied intensively, and more than one
thousand papers have been published about these polynomial differen-
tial equations of degree 2, see for instance the references quoted in the
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books of Ye [26, 27] and Reyn [22]. But the problem of classifying all
the integrable quadratic system remains open.

For a quadratic system the notion of integrability reduces to the
existence of a first integral, so the following natural question arises:
Given a quadratic system, how to recognize if it has a first integral?,
or Given a class of quadratic systems depending on parameters, how to

determine the values of the parameters for which the system has a first

integral? For the moment these questions do not have a good answers.

Many classes of integrable quadratic systems have been studied, and
for them all the possible global topological phase portraits have been
classified. One of the first of these classes studied was the classification
of the quadratic centers and their first integrals which started with the
works of Dulac [5], Kapteyn [9, 10], Bautin [3], Lunkevich and Sibirskii

[15], Schlomiuk [23], Żo la̧dek [29], Ye and Ye [28], Artés, Llibre and
Vulpe [2], ... The class of the homogeneous quadratic systems, see
Lyagina [16], Markus [17], Korol [11], Sibirskii and Vulpe [24], Newton
[20], Date [4] and Vdovina [25],... Another class is the one formed by
the Hamiltonian quadratic systems, see Artés and Llibre [1], Kalin and
Vulpe [8] and Artés, Llibre and Vulpe [2].

In this paper we want to study a new class of integrable quadratic
systems and classify all its phase portraits. More precisely we analyze
the class of all quadratic polynomial differential systems having an
ellipse and a straight line as invariant algebraic curves.

Our first result is to provide a normal form for all quadratic polyno-
mial differential systems having an ellipse and a straight line as invari-
ant algebraic curves.

Theorem 1. A planar polynomial differential system of degree 2 having

an ellipse and a straight line as invariant algebraic curves, after an

affine change of coordinates, can be written as

(2)
ẋ = −cy(x− r),
ẏ = C(x2 + y2 − 1) + cx(x− r),

where c, C ∈ R.

Theorem 1 is proved in section 2.

In the next result we present the first integrals of the polynomial
differential system of degree 2 having an ellipse and a straight line as
invariant algebraic curves.

Theorem 2. The quadratic polynomial differential systems (2) have

the following first integrals:
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(a) H = x2 + y2 if C = 0 and c 6= 0;

(b) H = x if C 6= 0 and c = 0;

(c) H = (x− r)2C/c(x2 + y2 − 1) if Cc 6= 0.

Moreover, the quadratic polynomial differential systems (2) have no

limit cycles.

Theorem 2 is proved in section 2.

In the next theorem we present the topological classification of all
the phase portraits of planar polynomial differential system of degree
2 having an ellipse and a straight line as invariant algebraic curves in
the Poincaré disc. For a definition of the Poincaré compactification
and Poincaré disc see section 3, and for a definition of a topological
equivalent phase portraits of a polynomial differential system in the
Poincaré disc see sections 3 and 4.

Theorem 3. Given a planar polynomial differential system of degree

2 having an ellipse and a straight line as invariant algebraic curves its

phase portrait is topological equivalent to one of the 18 phase portraits

of Figure 1.

Theorem 3 is proved in section 5.

2. Proofs of Theorems 1 and 2

Suppose that a polynomial differential system in the plane has an
invariant ellipse and an invariant straight line. Then, first we do an
affine transformation that change the ellipse to a circle and of course
the straight line to another straight line, second we translate the center
of the circle to the origin of coordinates, third we rescale the coordi-
nates in order that the circle has radius one, and finally we rotate the
coordinates around the origin until the straight line takes the form
x− r = 0 with r ≥ 0. Hence, we can assume that the systems having
an ellipse and a straight line as invariant algebraic curves, without loss
of generality, these curves are

f1(x, y) = x2 + y2 − 1 = 0, and f2(x, y) = x− r = 0, r ≥ 0.

We shall need the following result which is a consequence of Corollary
6 of [14], which characterizes all rational differential systems having two
curves f1 = 0 and f2 = 0 as invariant algebraic curves. Since this result
plays a main role in this work and its proof given in Theorem 2.1 of
[13] is shorter, for completeness we present it here.

Theorem 4. Let f1 and f2 be polynomials in R[x, y] such that the

Jacobian {f1, f2} 6≡ 0. Then any planar polynomial differential system
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C = 0, c 6= 0,
r > 0

C 6= 0, c = 0,
L9

R1

R2

R3, R5 R4 R6, R7, L4

R8
L1 L2, L3

C = 0, c 6= 0,
r = 0

L5

L6
L7 L8 P1

P2 P3

Figure 1. Phase portraits of systems (2).

which admits f1 = 0 and f2 = 0 as invariant algebraic curves can be

written as

(3) ẋ = ϕ1{x, f2} + ϕ2{f1, x}, ẏ = ϕ1{y, f2} + ϕ2{f1, y},
where ϕ1 = λ1f1 and ϕ2 = λ2f2, with λ1 and λ2 being arbitrary poly-

nomial functions.
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Proof. Consider the following vector fields

{∗, f2} = det









∂∗
∂x

∂∗
∂y

∂f2
∂x

∂f2
∂y









and {f1, ∗} = det









∂f1
∂x

∂f1
∂y

∂∗
∂x

∂∗
∂y









.

Using this notation and denoting by X the vector field associated to
system (3) we have

(4) X(∗) = ϕ1{∗, f2} + ϕ2{f1, ∗}.
In this way

X(f1) = ϕ1{f1, f2} + ϕ2{f1, f1} = λ1f1{f1, f2} = Kf1.

Hence f1 = 0 is an invariant algebraic curve of the polynomial vector
field X associated to system (3) with cofactor K = λ1{f1, f2}. Analo-
gously we can show that f2 = 0 is also an invariant algebraic curve of
X .

Now we prove that the vector field X is the most general polynomial
vector field which admits f1 = 0 and f2 = 0 as invariant algebraic
curves. Indeed let Y = (Y1(x, y), Y2(x, y)) be an arbitrary polynomial
vector field having f1 = 0 and f2 = 0 as invariant algebraic curves.
Then taking

ϕ1 =
Y (f1)

{f1, f2}
and ϕ2 =

Y (f2)

{f1, f2}
and substituting the expressions of ϕ1 and ϕ2 in the expression (4) of
the vector field X we obtain for an arbitrary polynomial F that

X(F ) = Y (f1)
{F, f2}
{f1, f2}

+ Y (f2)
{f1, F}
{f1, f2}

.

Substituting

Y (f1) = Y1
∂f1
∂x

+ Y2
∂f1
∂y

and Y (f2) = Y1
∂f2
∂x

+ Y2
∂f2
∂y

in X(F ) we have that X(F ) = Y (F ). Therefore the theorem is proved,
due to the arbitrariness of the function F . �

Using this theorem we prove Theorem 1.

Proof of Theorem 1. Noting that

{x, f2} = 0, {y, f2} = −1, {f1, x} = −2y, {f1, y} = 2x,
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and applying Theorem 4 we can write systems (1) of degree ≤ 3 having
an ellipse and a straight line as invariant algebraic curves as

ẋ = −2λ2y(x− r),
ẏ = −λ1(x

2 + y2 − 1) + 2λ2x(x− r),

where λ1, λ2 are arbitrary constants. Then we have system (2). �

Proof of Theorem 2. Statements (a) and (b) follow easily.

It is immediate that the function H given in statement (c) on the
orbits of system (7) satisfies

dH

dt
=

∂H

∂x
(−cy(x− r)) +

∂H

∂y
(C(x2 + y2 − 1) + cx(x− r)) = 0.

So H is a first integral of system (7), and this proves statement (c).

Since both first integrals are defined in the whole plane except per-
haps on the invariant straight line x = r, the system has no limit cycles.
This completes the proof of the theorem. �

3. Poincaré compactification

Let

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
be the planar polynomial vector field of degree n associated to the
polynomial differential system (1) of degree n. The Poincaré compact-

ified vector field p(X ) associated to X is an analytic vector field on S
2

constructed as follows (see, for instance [7], or Chapter 5 of [6]).

Let S
2 = {y = (y1, y2, y3) ∈ R

3 : y21 + y22 + y23 = 1} (the Poincaré

sphere) and TyS
2 be the tangent plane to S

2 at point y. We identify the
plane R2 where we have our polynomial vector field X with the tangent
plane T(0,0,1)S

2. Consider the central projection f : T(0,0,1)S
2 → S

2.
This map defines two copies of X , one in the northern hemisphere and
the other in the southern hemisphere. Denote by X ′ the vector field
Df ◦ X defined on S

2 except on its equator S
1 = {y ∈ S

2 : y3 = 0}.
Clearly the equator S

1 is identified to the infinity of R2. In order to
extend X ′ to a vector field on S

2 (including S
1) it is necessary that X

satisfies suitable conditions. In the case that X is a planar polynomial
vector field of degree n then p(X ) is the only analytic extension of
yn−1
3 X ′ to S

2. On S
2\S1 there are two symmetric copies of X , and

knowing the behaviour of p(X ) around S
1, we know the behaviour of

X at infinity.

The projection of the closed northern hemisphere of S
2 on y3 =

0 under (y1, y2, y3) 7−→ (y1, y2) is called the Poincaré disc, and it is
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denoted by D
2. The Poincaré compactification has the property that

S
1 is invariant under the flow of p(X ).

We say that two polynomial vector fields X and Y on R
2 are topo-

logically equivalent if there exists a homeomorphism on S
2 preserving

the infinity S
1 carrying orbits of the flow induced by p(X ) into orbits

of the flow induced by p(Y), preserving or reversing simultaneously the
sense of all orbits.

As S
2 is a differentiable manifold, for computing the expression for

p(X ), we can consider the six local charts Ui = {y ∈ S
2 : yi >

0}, and Vi = {y ∈ S
2 : yi < 0} where i = 1, 2, 3; and the dif-

feomorphisms Fi : Ui → R
2 and Gi : Vi → R

2 for i = 1, 2, 3 are
the inverses of the central projections from the planes tangent at the
points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1) re-
spectively. If we denote by (u, v) the value of Fi(y) or Gi(y) for any
i = 1, 2, 3 (so (u, v) represents different things according to the lo-
cal charts under consideration), then some easy computations give for
p(X ) the following expressions:

vn∆(u, v)

(

Q

(

1

v
,
u

v

)

− uP

(

1

v
,
u

v

)

,−vP

(

1

v
,
u

v

))

in U1,(5)

vn∆(u, v)

(

P

(

u

v
,
1

v

)

− uQ

(

u

v
,

1

v

)

,−vQ

(

u

v
,

1

v

))

in U2,(6)

∆(u, v) (P (u, v), Q(u, v)) in U3,

where ∆(u, v) = (u2 + v2 + 1)−
1

2
(n−1). The expression for Vi is the

same as that for Ui except for a multiplicative factor (−1)n−1. In these
coordinates for i = 1, 2, v = 0 always denotes the points of S1. In what

follows we omit the factor ∆(u, v) by rescaling the vector field p(X ).
Thus we obtain a polynomial vector field in each local chart.

4. Separatrices and canonical regions

Let p(X ) be the Poincaré compactification in the Poincaré disc D of
the polynomial differential system (1) defined in R

2, and let Φ be its
analytic flow. Following Markus [18] and Neumann [19] we denote by
(U,Φ) the flow of a differential system on an invariant set U ⊂ D under
the flow Φ. Two flows (U,Φ) and (V,Ψ) are topologically equivalent if
and only if there exists a homeomorphism h : U → V which sends orbits
of the flow Φ into orbits of the flow Ψ either preserving or reversing
the orientation of all the orbits.

The flow (U,Φ) is said to be parallel if it is topologically equivalent
to one of the following flows:
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(i) The flow defined in R
2 by the differential system ẋ = 1, ẏ = 0,

called strip flow.
(ii) The flow defined in R

2 \ {(0, 0)} by the differential system in

polar coordinates ṙ = 0, θ̇ = 1, called annular flow.
(iii) The flow defined in R

2 \ {(0, 0)} by the differential system in

polar coordinates ṙ = r, θ̇ = 0, called spiral or radial flow.

It is known that the separatrices of the vector field p(X ) in the
Poincaré disc D are:

(I) all the orbits of p(X ) which are in the boundary S
1 of the

Poincaré disc (i.e. at the infinity of R2),
(II) all the finite singular points of p(X ),

(III) all the limit cycles of p(X ), and
(IV) all the separatrices of the hyperbolic sectors of the finite and

infinite singular points of p(X ).

Moreover such vector fields p(X ), coming from polynomial vector fields
(1) of R2 having finitely many singular points finite and infinite, have
finitely many separatrices. For more details see for instance [12].

Let S be the union of the separatrices of the flow (D,Φ) defined by
p(X ) in the Poincaré disc D. It is easy to check that S is an invariant
closed set. If N is a connected component of D \ S, then N is also an
invariant set under the flow Φ of p(X ), and the flow (N,Φ|N) is called
a canonical region of the flow (D,Φ) .

Proposition 5. If the number of separatrices of the flow (D,Φ) is

finite, then every canonical region of the flow (D,Φ) is parallel.

For a proof of this proposition see [19] or [12].

The separatrix configuration Sc of a flow (D,Φ) is the union of all
the separatrices S of the flow together with an orbit belonging to each
canonical region. The separatrix configuration Sc of the flow (D,Φ) is
said to be topologically equivalent to the separatrix configuration S∗

c

of the flow (D,Φ∗) if there exists an orientation preserving homeomor-
phism from D to D which transforms orbits of Sc into orbits of S∗

c , and
orbits of S into orbits of S∗.

Theorem 6 (Markus–Neumann–Peixoto). Let (D,Φ) and (D,Φ∗) be

two compactified Poincaré flows with finitely many separatrices com-

ing from two polynomial vector fields (1). Then they are topologically

equivalent if and only if their separatrix configurations are topologically

equivalent.

For a proof of this result we refer the reader to [18, 19, 21].
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It follows from the previous theorem that in order to classify the
phase portraits in the Poincaré disc of a planar polynomial differential
system having finitely many separatrices finite and infinite, it is enough
to describe their separatrix configuration. This is what we have done
in Figure 1, where we also have added the invariant straight line x = r
with r ≥ 0 and the invariant circle x2 + y2 = 1.

5. Phase portraits

It is clear that the phase portrait of the quadratic polynomial dif-
ferential system (2) with C = 0, if formed by all the invariant circles
centered at the origin of coordinates, intersected with the invariant
straight line x = r filled of equilibria, providing the two first phase
portraits of Figure 1.

In what follows we shall study the phase portraits of system (2) with
C 6= 0.

Doing the rescaling of the time τ = Ct, and renaming c/C again by
c, we have the quadratic system

(7)
ẋ = −cy(x− r),
ẏ = x2 + y2 − 1 + cx(x− r),

with c ∈ R and r ≥ 0.

Remark 7. System (7) is reversible because it does not change under

the transformation (x, y, t) → (x,−y,−t). Hence we know that the

phase portrait of system (7) is symmetric with respect to the x−axis.

The way for studying the phase portraits of systems (7) is the follow-
ing. First we shall characterize all the finite equilibria of those systems
together with their local phase portraits. After we do the same for the
infinite equilibria, and finally using this information on the equilibria
and the existence of the invariant straight line x = r with r ≥ 0, and
of the invariant ellipse x2 + y2 = 1 we shall provide the classification
of all the phase portraits of systems (7).

5.1. The finite singular points. The finite singular points of system
(7) are characterized in the next result.

Proposition 8. System (7) has the following finite singular points:

(a) if c = 0 all the points of circle x2 + y2 = 1;
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P3

1

−2 0
c

r

R1

R3

R4

R5

R6R7R8

R2

P1

P2

L5L6L7

L1
L2

L3

L4

L8

∆ = 0

L9

Figure 2. The bifurcation diagram.

(b) if c /∈ {−1, 0} the singular points are

(8)

M± = (r,±
√

1 − r2) if 0 ≤ r < 1,

M = (1, 0) if r = 1,

N± = (x∗

±
, 0) =

(

cr ±
√

∆

2(c + 1)
, 0

)

if ∆ > 0,

N = (x∗, 0) =

(

cr

2(c + 1)
, 0

)

if ∆ = 0,

where ∆ = c2r2 + 4(c + 1);

(d) if c = −1 the singular points are

(9)

(0,±1) if r = 0,
(

1

r
, 0

)

and (r,±
√

1 − r2) if 0 < r < 1,

(

1

r
, 0

)

if r ≥ 1.

Proof. The proof follows easily studying the real solutions of the system
cy(x− r) = 0, x2 + y2 − 1 + cx(x− r) = 0. �

We write the curve ∆ = 0 in the strip {(c, r) : c ∈ R, 0 ≤ r ≤ 1}
as

(10) c±(r) =
−2 ± 2

√
1 − r2

r2
.
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Obviously c−(r) ≤ −2 ≤ c+(r).
Now we define the regions

R1 = {(c, r) : 0 ≤ r < 1, c > 0},
R2 = {(c, r) : 0 ≤ r < 1, −1 < c < 0},
R3 = {(c, r) : 0 < r < 1, c+(r) < c < −1},
R4 = {(c, r) : 0 ≤ r < 1, c−(r) < c < c+(r)},
R5 = {(c, r) : 0 < r < 1, c < c−(r)},
R6 = {(c, r) : 1 < r, c > 0},
R7 = {(c, r) : 1 < r, −1 < c < 0},
R8 = {(c, r) : 1 < r, c < −1},

the curves

L1 = {(c, r) : 0 < r < 1, c = −1},
L2 = {(c, r) : 0 < r < 1, −2 < c = c+(r)},
L3 = {(c, r) : 0 < r < 1, c = c−(r) < −2},
L4 = {(c, r) : r = 1, 0 < c},
L5 = {(c, r) : r = 1, −1 < c < 0},
L6 = {(c, r) : r = 1, −2 < c < −1},
L7 = {(c, r) : r = 1, c < −2},
L8 = {(c, r) : r > 1, c = −1},
L9 = {(c, r) : r ≥ 0, c = 0}.

and the points P1(c, r) = (−1, 1), P2(c, r) = (−2, 1) and P3(c, r) =
(−1, 0). See Figure 2.

For definitions of elliptic and hyperbolic sectors, cusp, and hyper-
bolic, semi–hyperbolic and nilpotent singular points see [6].

Proposition 9. System (7) has the following finite singular points if

its parameters (c, r) are in

(R1) two hyperbolic saddles M± and two centers N±.

(R2) four hyperbolic singular points: M+ is an unstable node, M− is

a stable node, and N± are saddles.

(R3) three hyperbolic singular points: M+ is an unstable node, M−

is a stable node, and N+ is saddle; and a center N−.

(R4) two hyperbolic singular points: M+ is an unstable node, and M−

is a stable node.

(R5) three hyperbolic singular points: M+ is an unstable node, M−

is a stable node, and N− is saddle; and a center N+.

(R6,7) one hyperbolic saddle N+ and a center N−.

(R8) two centers N±.

(L1) three hyperbolic singular points: M+ is an unstable node, M−

is a stable node, and N is a saddle.
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(L2,3) two hyperbolic singular points: M+ is an unstable node and M−

is a stable node, and a nilpotent cusp N .

(L4) M = (1, 0) is a nilpotent saddle and N = (−1/(c + 1), 0) is a

center.

(L5) M = (1, 0) is a nilpotent singular point formed by one elliptic

sector and one hyperbolic sector, and N = (−1/(c + 1), 0) is a

hyperbolic saddle.

(L6,7) M = (1, 0) is a nilpotent singular point formed by one elliptic

sector and one hyperbolic sector, and N = (−1/(c + 1), 0) is a

center.

(L8) N(1/r, 0) is a center.

(L9) all the points of circle x2 + y2 = 1 are singular points.

(P1) M = (1, 0) is a nilpotent singular point formed by one elliptic

sector and one hyperbolic sector.

(P2) M = (1, 0) is a degenerated singular point formed by the union

of two elliptic sectors.

(P3) two hyperbolic singular points: M+ is an unstable node and M−

is a stable node.

Proof. On the curve L9 we have that c is zero, so the straight lines
x = constant are invariant by system (7), see the phase portrait L9 in
Figure 1.

In the following we always assume c 6= 0. We distinguish two cases
in the study of the finite singular points of system (7).

Case 1: Singular points on the invariant straight line x = r. Clearly
system (7) has no singular point on x = r when r > 1, a unique singular
point M when r = 1, and the singular points M± for 0 ≤ r < 1, see
(8).

Subcase 1.1: 0 ≤ r < 1. The eigenvalues of the Jacobian matrix
of system (7) at M+ are −c

√
1 − r2 and 2

√
1 − r2, and at M− are

c
√

1 − r2 and −2
√

1 − r2. Therefore, M± are hyperbolic saddles if
c > 0; and M+ is an unstable hyperbolic node and M− is a stable
hyperbolic node if c < 0, see for more details Theorem 2.15 of [6]
where are described the local phase portraits of the hyperbolic singular
points.

Subcase 1.2: r = 1. The Jacobian matrix of system (7) at M(1, 0) is

JM =

(

0 0
c + 2 0

)

.

Subcase 1.2.1: c 6= −2. So M is a nilpotent singular point. Using
Theorem 3.5 of [6] for studying the local phase portraits of the nilpo-
tent singular points we get that M a nilpotent saddle if c > 0, and if
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c < 0 and different from −2 is reunion of one elliptic sector with one
hyperbolic sector.

Subcase 1.2.2: c = −2. Using the polar blowing–up centered at M , i.e.
x = ρ cos θ + 1 and y = ρ sin θ, system (7) becomes

(11)
ρ̇ = ρ2 sin θ,

θ̇ = −ρ cos θ.

The singular points of (11) on {ρ = 0} are located at θ = ±π/2.
Then (0, π/2) is an unstable hyperbolic node and (0,−π/2) is a stable
hyperbolic node. Doing a blowing down we obtain that M is formed
by the union of two elliptic sectors. See picture P2 in Figure 1.

Case 2: Singular points on the straight line y = 0.

Subcase 2.1: ∆ > 0 and c 6= −1. Then system (7) has two singular
points N± = (x∗

±
, 0), see (8). The Jacobian matrix of system (7) at the

points N± is

(12) J =

(

0 −c(x∗

±
− r)

±
√

∆ 0

)

.

It is easy to check that

(x∗

+ − r)(x∗

−
− r) =

r2 − 1

c + 1
, (x∗

+ − r) + (x∗

−
− r) = −(c + 2)r

c + 1
.

Subcase 2.1.1: 0 ≤ r < 1. Then we have x∗

−
< r < x∗

+ when c > −1,
and x∗

±
> r when −2 ≤ c < −1, and x∗

±
< r when c ≤ −2. Using

the fact that system (7) is reversible with respective to x–axis, and the
eigenvalues of the Jacobian matrix (12), we obtain that N± are centers
when c > 0, and saddles when −1 < c < 0. Moreover, N+ is saddle
and N− a center when −2 < c < −1; N+ is center and N− is saddle
when c < −2.

Subcase 2.1.2: r > 1. Then x∗

±
< r when c > −1; x∗

+ < r < x∗

−
when

c < −1. Since system (7) is reversible with respective to x–axis, using
the eigenvalues of the Jacobian matrix (12) we get that N+ is a saddle
and N− a center when c > 0; N− is a saddle and N+ a center when
−1 < c < 0; and N± are centers when c < −1.

Subcase 2.1.3: r = 1. This case has been studied inside the Case 1.

Subcase 2.1.3.1: c 6= −2. Then N+ meets with M±, i.e., system (7) has
the singular points N+ = M± = M(1, 0) and N− = N(−1/(c + 1), 0).
Here we only need to study the local phase portrait of the singular
point N , because the local phase portrait of M has been study in Case
1. The eigenvalues of the Jacobian matrix of system (7) at N are

±(c + 2)
√

−c/(c + 1). Therefore N is a saddle if −1 < c < 0, and N
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is a linear center for c > 0 or c < −1 and c 6= −2, but N is a center of
system (7) because this system is reversible with respect to x–axis.

Subcase 2.1.3.2: c = −2.

Subcase 2.2: ∆ = 0 and c 6= −1, we have from (10) that c = c±(r),
and from (12) the singular point N = (x∗, 0) is nilpotent. Taking
(x, y) = (X + x∗, Y ), after (X, Y ) = (x, y), and rescaling the indepen-
dent variable t by τ = rc(c + 2)t/(2(c + 1)), we obtain

ẋ = y − 2(c + 1)

r(c + 2)
xy,

ẏ =
2(c + 1)

rc(c + 2)
((c + 1)x2 + y2) .

By Theorem 3.5 of [6] the origin of the previous system is a cusp.

Subcase 2.3: c = −1. On y = 0 there is the unique singular point
N(1/r, 0) when r > 0.

Subcase 2.3.1: r /∈ {0, 1}. The eigenvalues of the Jacobian matrix
of system (7) at N are ±

√
1 − r2, which implies that N is obviously

a linear center when r > 1 (and consequently a center due to the
reversibility of the system), and N is a saddle when 0 < r < 1.

Subcase 2.3.2: r = 1. The unique singular point of the system is (1, 0),
the Jacobian matrix on it is

(

0 0
1 0

)

.

So it is a nilpotent singular point. By Theorem 3.5 of [6] its local phase
portrait is formed by one hyperbolic and one elliptic sector (see picture
P1 in Figure 1).

Subcase 2.3.3: r = 0. No singular points on y = 0.

Finally, taking into account all this information on the finite singu-
lar points, we can organize it, as it appears in the statements of the
proposition. �

5.2. The infinite singular points.

Proposition 10. The following two statements hold.

(a) If c 6= −1 system (7) has a pair of infinite singular points, which

are saddles if c < −1, and nodes if c > −1.

(b) If c = −1 the infinity of system (7) is filled of singular points.

Proof. Considering the infinite singular of (7), we take

(13) x =
1

v
, y =

u

v
.
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and the time rescaling t = vτ . Then system (7) in the local chart (13)
is

(14)
u̇ = (u2 + 1)(1 + c) − v2 − cr(u2 + 1)v,
v̇ = cu(1 − rv)v.

If c 6= −1, there is no singular point of system (14) on v = 0. Taking

(15) x =
u

v
, y =

1

v
.

and the time rescaling t = vτ . Then system (7) in the local chart (15)
is

(16)
u̇ = uv2 + cr(1 + u2)v − u(1 + u2)(1 + c),
v̇ = v(v2 − 1 + cruv − (c + 1)u2).

If c 6= −1, the origin is a singular point of (16). It is easy to get that the
eigenvalues of the Jacobian matrix at the origin are −1 and −(c + 1),
which implies that system (7) has a pair of infinite saddles if c < −1,
and a pair of node if c > −1.

If c = −1, it is obtained from (14) and (16) that the infinity v = 0 of
the Poincaré disc is filled with singular points. Furthermore, we reduce
(14) into

(17)
u̇ = −z + r(u2 + 1),
ż = −u(1 − rz).

If r = 0, the origin of system (17) is a saddle, that is, there is a pair of
infinite singular point of system (17). �

According to Theorem 2, Proposition 9, Proposition 10 and using
the invariant straight line x = 0 with r ≥ 0 and the invariant circle
x2 + y2 = 1, we obtain the global phase portraits of system (7) in
Poincaré disc described in Figure 1.
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