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Abstract. In this paper we consider the quadratic polynomial
differential systems in the plane having a hyperbola and a straight
line as invariant algebraic curves, and we classify all its phase por-
traits. Moreover these systems are integrable and we provide their
first integrals.

1. Introduction and statement of the main results

In this paper we consider a planar quadratic differential system

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P and Q are real polynomials such that the maximum of the
degree of P and Q is 2. The dot in system (1) denotes derivative with
respect to the independent variable t. We introduce some definitions.

Let f is a nonconstant polynomial in the variable x and y. The
algebraic curve f(x, y) = 0 is an invariant curve of system (1), if there
exists some polynomial K(x,y) such that

X (f) = P
∂f

∂x
+ Q

∂f

∂y
= Kf,

and K(x, y) is called the cofactor of the invariant curve f(x, y) = 0.

Let H(x, y) be a function defined in a dense and open subset U of R2.
The function H(x, y) is a first integral of system (1) if H is constant
on the solutions of system (1) contained in U , i.e.

X (H) |U = P
∂H

∂x
(x, y) + Q

∂H

∂y

∣∣∣∣
U

= 0.
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And a quadratic system is integrable in U if it has a first integral H in
U .

Up to now several hundred of papers have been published studying
differential aspects of quadratic systems, as their integrability, their
limit cycles, their global dynamical behavior, and · · · , see for instance
the references quoted in the books of Reyn [20] and Ye [24, 25]. But
it remains many open problems of these systems. For example, the
problem of the maximum number and distribution of limit cycles, or
the problem of classifying all the integrable quadratic systems, remain
open.

Darboux in [6] introduced the relation between the existence of in-
variant algebraic curves on a polynomial differential system and its
integrability, see for more details in [4, 8].

In [7] Dulac started the studying of the classification of the quadratic
centers and their first integrals, see also [2, 3, 10, 11, 16, 21, 26, 27].
In [1] Artés and Llibre studied the Hamiltonian quadratic systems, see
also [9, 2]. In [18] Markus studied the class of homogeneous quadratic
systems, see also [5, 12, 17, 19, 22, 23].

In this paper we concern about ”Given a class of quadratic systems
depending on parameters, how to determine the values of the param-
eters for which the system has a first integral?” In [15] and [13] the
authors proved the integrability of the class of quadratic systems hav-
ing an ellipse and a straight line as invariant algebraic curves, or two
non-concentric circles as invariant algebraic curves, respectively. Ad-
ditionally the authors provided all the different topological phase por-
traits that these classes exhibit in the Poincaré disc.

In this paper we want to study a new class of integrable quadratic
systems, the ones having a hyperbola and a straight line as invariant
algebraic curves. We prove their integrability and classify all their
phase portraits.

Our first result is to provide a normal form for all quadratic poly-
nomial differential systems having a hyperbola and a straight line as
invariant algebraic curves.

Theorem 1. A planar polynomial differential system of degree 2 having
a hyperbola and a straight line as invariant algebraic curves after an
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affine change of coordinates can be written as either

(2)
ẋ = c

a2 − b2

a2
y(x− δ),

ẏ = C

(
x2

a2 − b2
− a2 − b2

a2
y2 − 1

)
+

c

a2 − b2
x(x− δ),

or

(3)
ẋ = −cx(x− r),
ẏ = C(2xy − 1) + cy(x− r),

where a, b, c, C ∈ R with a �= 0, a �= b and δ = {0, 1}.

Theorem 1 is proved in section 2. In the next result we present the
first integrals of the polynomial differential system of degree 2 having
a hyperbola and a straight line as invariant algebraic curves.

Theorem 2. The quadratic polynomial differential systems (2) have
the following first integrals:

(a) H = x if c = 0;

(b) H = (x− δ)
(−2 a4+b4

(a2−b2)2
C
c
)
( x2

a2−b2
− a2−b2

a2
y2 − 1) if c �= 0;

and systems (3) have the following first integrals:

(c) H = x if c = 0;
(d) H = (x− r)2C/c(2xy − 1) if c �= 0.

Moreover, the quadratic polynomial differential systems (2) and (3)
have no limit cycles.

Theorem 2 is proved in section 2.

In the next theorem we present the topological classification of all
the phase portraits of planar polynomial differential system of degree
2 having a hyperbola and a straight line as invariant algebraic curves
in the Poincaré disc.

Theorem 3. Given a planar polynomial differential system of degree 2
having a hyperbola and a straight line as invariant algebraic curves its
phase portrait is topological equivalent to one of the 38 phase portraits
of Figures 1, 2, 3.

Theorem 3 is proved in sections 3 and 4.
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C = 0

ω1 ω2 ω3

Figure 1. The phase portraits of system (3).

2. Quadratic polynomial differential systems with

hyperbola

In this section we consider that system (1) has an invariant hyperbola
and an invariant straight line. Then by an affine transformation we can
change the hyperbola to the following norm form and to any straight
line

(4) H : f1(x, y) = x2−y2−1 = 0, and L : f2(x, y) = ax+by−δ = 0,

where δ = 1 or 0. Without loss of generality, let a ≥ 0 for L. According
to the properties of the hyperbola, we classify the straight line in the
following four cases,

(i) a = ±b; (ii) 0 < a2 < b2, (iii) a2 > b2, (iv) a = 0.

For a �= 0, a2 − b2 �= 0, doing the transformation

(
x
y

)
=

⎛
⎜⎝

a

a2 − b2
− b

a

− b

a2 − b2
1

⎞
⎟⎠( u

v

)
,
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L11, L12 L21
L22 L31, L32

L33 L34 L41 L42

L43 P1 P2 L0−

L0+ L44 L45 C = 0

Figure 2. The phase portraits I of system (2).

the curves (4) change into
(5)

H : f1(x, y) =
x2

a2 − b2
−a2 − b2

a2
y2−1 = 0, and L : f2(x, y) = x−δ = 0,

for cases (ii) and (iii), where we rename (u, v) by (x, y). Hence, in the
last two cases, without loss of generality, we have that a > 0, b ≥ 0.
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R1, R2 R01,Ω6 R3,Ω5 R4,Ω4

R5 R6 R7
R8,Ω1

R9 R10R02,Ω2 R03,Ω3

Figure 3. The phase portraits II of system (2).

For case (i), doing the transformation

(
x
y

)
=

⎛
⎜⎝

√
2

2

√
2

2

−
√
2

2

√
2

2

⎞
⎟⎠( u

v

)
,

the invariant hyperbola and the invariant straight line can be written
as

(6) H : f1(x, y) = 2xy − 1 = 0, and L : f2(x, y) = x− r = 0,

where r = δ/(
√
2b). Finally, case (iv) pass to case (ii) by the transfor-

mation (x, y) −→ (y, x).

Next we provide a normal form for all quadratic polynomial differ-
ential systems having a hyperbola and a straight line as invariant al-
gebraic curves in Theorem 1. We shall need the following result which
is a consequence of [14, Corollary 6], which characterizes all rational
differential systems having two curves f1 = 0 and f2 = 0 as invariant
algebraic curves.
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Theorem 4. Let f1 and f2 be polynomials in R[x, y] such that the
Jacobian {f1, f2} �≡ 0. Then any planar polynomial differential system
which admits f1 = 0 and f2 = 0 as invariant algebraic curves can be
written as

ẋ = ϕ1{x, f2}+ ϕ2{f1, x}, ẏ = ϕ1{y, f2}+ ϕ2{f1, y},
where ϕ1 = λ1f1 and ϕ2 = λ2f2, with λ1 and λ2 being arbitrary poly-
nomial functions.

Using this theorem we will prove Theorem 1.

Proof of Theorem 1. First for the cases (ii) and (iii) noting that

{x, f2} = 0, {y, f2} = −1, {f1, x} = 2
a2 − b2

a2
y, {f1, y} =

2x

a2 − b2
,

and applying Theorem 4 we can write systems (1) of degree ≤ 2 having
the hyperbola and the straight line given in (5) as invariant algebraic
curves into the form

ẋ = 2λ2
a2 − b2

a2
y(x− δ),

ẏ = −λ1

(
x2

a2 − b2
− a2 − b2

a2
y2 − 1

)
+

2λ2

a2 − b2
x(x− δ),

where λ1, λ2 are arbitrary constants. Then we have system (2).

Second for the case (i), noting that

{x, f2} = 0, {y, f2} = −1, {f1, x} = −2x, {f1, y} = 2y,

and applying Theorem 4 we can write systems (1) of degree ≤ 2 having
the hyperbola and the straight line given in (6) as invariant algebraic
curves into the form

ẋ = −2λ2x(x− r),
ẏ = −λ1(2xy − 1) + 2λ2y(x− r),

where λ1, λ2 are arbitrary constants, obtaining system (3). �

Proof of Theorem 2. Statements (a) and (c) follow easily. It is imme-
diate that the function H given in statement (b) or (d) on the orbits
of system (2) or (3) satisfies

dH

dt
=

∂H

∂x
ẋ+

∂H

∂y
ẏ = 0.

So H is a first integral of system (2) or (3), and this proves statement
(b) and (d).
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Since both first integrals are defined in the whole plane except per-
haps on the invariant straight line x = δ, or x = r, the systems has no
limit cycles. This completes the proof of the theorem. �

If C = 0 in systems (2) and (3), then it is easy to verify that they
are equivalent to a linear differential system with a saddle and the
straight line x = δ or x = r filled of singular points, respectively. Then
the phase portraits of systems (2) and (3) are shown in last picture of
Figures 1 and 2 with the title C = 0, respectively. Assume C �= 0.
Doing the rescaling of the time τ = Ct, and renaming ρ = c/C system
(2) becomes

(7)
ẋ = ρ

a2 − b2

a2
y(x− δ),

ẏ =
x2

a2 − b2
− a2 − b2

a2
y2 − 1 +

ρ

a2 − b2
x(x− δ),

and the quadratic system corresponding to (3) writes as

(8)
ẋ = −ρx(x − r),
ẏ = 2xy − 1 + ρy(x− r),

with ρ ∈ R and r ≥ 0.

Remark 5. In system (8) we only consider the case r ≥ 0. If r < 0,
then it can be changed into the case of r ≥ 0 by the transformation
(x, y, t) → (−x,−y,−t).

System (7) is reversible because it does not change under the transfor-
mation (x, y, t) → (x,−y,−t). Hence we know that the phase portrait
of system (7) is symmetric with respect to the x−axis.

In the following sections we shall prove our main Theorem 3 for
systems (7) and (8).

3. Phase portraits of system (8)

In this section we consider the case of a2 − b2 = 0, and take the
normal form as system (8).

3.1. The finite singular points. The finite singular points of system
(8) are characterized in the following result.

Proposition 6. System (8) has the following finite singular points.

(a) If ρ = 0 all the points of the hyperbola 2xy − 1 = 0.
(b) If ρ �= 0 and r = 0 there is no singular point.
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(c) If ρ > 0 and r �= 0 the singular points are B1(0,−1/(ρr)) and
B2(r, 1/(2r)), and are saddles.

(d) If ρ < 0 and r �= 0 the singular points are B1(0,−1/(ρr)) and
B2(r, 1/(2r)), the first is a saddle and the second a node.

Proof. It follows easily from (8) that statements (a) and (b) hold. Not-
ing that the Jacobian matrices of system (8) at the points B1 and B2

are (
ρr 0

−ρ+ 2

2r
−ρr

)
,

( −ρr 0
ρ+ 2

2r
2r

)

respectively, it follows the proof of statements (c) and (d). �

3.2. The infinite singular points.

Proposition 7. System (8) has the following infinite singular points.

(a) If ρ = −1 the infinity of system (8) is filled of singular points.
(b) If ρ �= −1, system (8) has two pairs of infinite singular points.

There exits a pair of infinite nodes for ρ < −1 and ρ > 0, while
a pair of infinite saddles for −1 < ρ < 0. The other pair of
infinite singular points are the union of a parabolic sector and a
hyperbolic sector if ρ < −1 and r ≥ 0, if ρ > 0 and r = 0, while
they are a pair of infinite singular points each one formed by the
union of a parabolic sector and an elliptic sector if −1 < ρ < 0
and r ≥ 0, or if ρ > 0 and r > 0.

Proof. Doing the change of variables we take

(9) x =
1

v
, y =

u

v
,

and the time rescaling t = vτ , system (8) in the coordinates (u, v) is

(10)
u̇ = −v2 − 2rρuv + 2(ρ+ 1)u,
v̇ = ρv(1− rv).

Obviously system (10) has a unique singular point (0, 0), which is an
unstable node for ρ > 0, a saddle if −1 < ρ < 0, and a stable node for
ρ < −1.

Doing the change of variables

(11) x =
u

v
, y =

1

v
,

and the time rescaling t = vτ , system (8) becomes

(12)
u̇ = −u(2(ρ+ 1)u− 2rρv − v2),
v̇ = v(v2 − (ρ+ 2)u+ rρv).
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blow-down

Figure 4. Polar blow-down of the singular points of system (13).

Hence (0, 0) is a degenerated singular point. Using the blowing-up
technique we obtain that it is formed by a pair of parabolic sectors and
an elliptic sector if −1 < ρ < 0 and r ≥ 0, or ρ > 0 and r > 0. And
it is formed by a pair of parabolic sectors and a hyperbolic sectors if
ρ < −1 and r ≥ 0, or ρ > 0 and r = 0.

As an example we study the case −1 < ρ < 0 and r > 0. Considering
the degenerated singular point (0, 0) of (12), using the polar blowing-
up,

u = γ cos θ and v = γ sin θ,

we have

(13)
γ̇ = ((cos2 θ + 1)(r sin θ − cos θ)ρ− 2 cos θ)γ2 + sin2 θγ3,

θ̇ = −ρ cos θ sin θ(r sin θ − cos θ)γ.

System (13) has simple zeroes θ = 0, π/2, π, 3π/2 and ±θ∗ on γ = 0,
where θ∗ satisfies r sin θ− cos θ = 0. It is easy to verify that θ = 0, π/2
are stable nodes, θ = π, 3π/2 are unstable nodes and ±θ∗ are saddles.
Hence doing blow-down we get the phase portrait in a neighborhood of
the origin of system (13), shown in Figure 4. Furthermore, taking into
account the time scaling transformation t = vτ and that the infinite
singular point of (10) is a saddle, we obtain the phase portraits near
the boundary of the Poincaré disk in Figure 4. �

Proof of the phase portraits of Figure 1 for system (8) in Theorem 3.
We define the following regions in the (ρ, r)− plane:

ω1 = {(ρ, r) : ρ < −1, r > 0},
ω2 = {(ρ, r) : −1 < ρ < 0, r > 0},
ω3 = {(ρ, r) : 0 < ρ, r > 0},
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ρ

r

L01 L02 L03

L
0
4

L
0
5

P0 0

ω1 ω2 ω3

Figure 5. The bifurcation diagram of system (8).

the straight lines:

L01 = {(ρ, r) : ρ < −1, r = 0},
L02 = {(ρ, r) : −1 < ρ < 0, r = 0},
L03 = {(ρ, r) : 0 < ρ, r = 0},
L04 = {(ρ, r) : ρ = −1, r > 0},
L05 = {(ρ, r) : ρ = 0, r ≥ 0},

and the point P0 = (−1, 0). In view of Propositions 6 and 7, we show
the bifurcation diagram of system (8) with respect to the parameters
ρ and r in Figure 5.

From Theorem 2, Propositions 6 and 7, using the invariant straight
lines x = 0 and x = r with r ≥ 0, and the invariant hyperbola 2xy = 1,
we obtain the global phase portraits of system (8) in the Poincaré disc
described in Figure 1. This completes the proof of Theorem 3. �

4. Phase portraits of system (7)

In this section we study system (7) for a2 − b2 �= 0 and a �= 0.

4.1. The finite singular points. The finite singular points of system
(7) are characterized in the following result.

Proposition 8. System (7) has the following finite singular points.

(a) If ρ = 0 all the points of the hperbola
x2

a2 − b2
− a2 − b2

a2
y2 = 1.
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(b) For δ = 1, if ρ /∈ {−1, 0} the singular points are

(14)

M± = (1, y∗±) =

(
1,±a

√
1− (a2 − b2)

a2 − b2

)
if a2 − b2 ≤ 1,

N± = (x∗
±, 0) =

(
ρ±√

Δ

2(ρ+ 1)
, 0

)
if Δ ≥ 0,

where Δ = ρ2 + 4(ρ+ 1)(a2 − b2).
If ρ = −1, system (7) has the singular point N c = (a2−b2, 0),

and the two singular points M± if a2 − b2 < 1, or the unique
singular point M± = N c = (1, 0) if a2 − b2 = 1.

(c) For δ = 0, if ρ /∈ {−1, 0} the singular points are

(15)

M0
± = (0, y0±) =

(
0,± a√

b2 − a2

)
if a2 − b2 < 0,

N0
± = (x0

±, 0) =

(
±
√

a2 − b2

ρ+ 1
, 0

)
if

a2 − b2

ρ+ 1
> 0.

If ρ = −1 the singular points are M0
±.

Proof. The proof follows easily studying the real solutions of system
(7). �

Denote η = a2 − b2, we write the curve Δ = 0 of Proposition 8 in
the plane of (ρ, η) as

(16) η(ρ) = − ρ2

4(ρ+ 1)
,

which is the hyperbola with the two branches η± corresponding to
ρ < −1 and ρ > −1, respectively.
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Now we define the following regions when δ = 1:

R01 = {(ρ, a2 − b2) : ρ < −1, a2 − b2 > η+(ρ)},
R02 = {(ρ, a2 − b2) : −1 < ρ < 0, a2 − b2 < η−(ρ)},
R03 = {(ρ, a2 − b2) : 0 < ρ, a2 − b2 < η−(ρ)},
R1 = {(ρ, a2 − b2) : ρ < −2, 1 < a2 − b2 < η+(ρ)},
R2 = {(ρ, a2 − b2) : −2 < ρ < −1, 1 < a2 − b2 < η+(ρ)},
R3 = {(ρ, a2 − b2) : −1 < ρ < 0, a2 − b2 > 1},
R4 = {(ρ, a2 − b2) : ρ > 0, a2 − b2 > 1},
R5 = {(ρ, a2 − b2) : ρ < −1, 0 < a2 − b2 < 1},
R6 = {(ρ, a2 − b2) : −1 < ρ < 0, 0 < a2 − b2 < 1},
R7 = {(ρ, a2 − b2) : 0 < ρ, 0 < a2 − b2 < 1},
R8 = {(ρ, a2 − b2) : ρ < −1, a2 − b2 < 0},
R9 = {(ρ, a2 − b2) : −1 < ρ < 0, η−(ρ) < a2 − b2 < 0},
R10 = {(ρ, a2 − b2) : ρ > 0, η−(ρ) < a2 − b2 < 0},

the curves:

L0 = {(ρ, a2 − b2) : ρ = 0},
L11 = {(ρ, a2 − b2) : ρ < −2, a2 − b2 = η+(ρ)},
L12 = {(ρ, a2 − b2) : −2 < ρ < −1, a2 − b2 = η+(ρ)},
L21 = {(ρ, a2 − b2) : −1 < ρ < 0, a2 − b2 = η−(ρ)},
L22 = {(ρ, a2 − b2) : 0 < ρ, a2 − b2 = η−(ρ)},
L31 = {(ρ, a2 − b2) : ρ < −2, a2 − b2 = 1},
L32 = {(ρ, a2 − b2) : −2 < ρ < −1, a2 − b2 = 1},
L33 = {(ρ, a2 − b2) : −1 < ρ < 0, a2 − b2 = 1},
L34 = {(ρ, a2 − b2) : 0 < ρ, a2 − b2 = 1},
L41 = {(ρ, a2 − b2) : ρ = −1, a2 − b2 < 0},
L42 = {(ρ, a2 − b2) : ρ = −1, 0 < a2 − b2 < 1},
L43 = {(ρ, a2 − b2) : ρ = −1, 1 < a2 − b2},
L0+ = {(ρ, a2 − b2) : ρ = 0, 0 < a2 − b2},
L0− = {(ρ, a2 − b2) : ρ = 0, a2 − b2 < 0},

and the points P1 = (−1, 1) and P2 = (−2, 1), see Figure 6. We also
define the following regions when δ = 0:

Ω1 = {(ρ, a2 − b2) : ρ < −1, a2 − b2 < 0},
Ω2 = {(ρ, a2 − b2) : −1 < ρ < 0, a2 − b2 < 0},
Ω3 = {(ρ, a2 − b2) : 0 < ρ, a2 − b2 < 0},
Ω4 = {(ρ, a2 − b2) : 0 < ρ, a2 − b2 > 0},
Ω5 = {(ρ, a2 − b2) : −1 < ρ < 0, a2 − b2 > 0},
Ω6 = {(ρ, a2 − b2) : ρ < −1, a2 − b2 > 0},
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R01
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R8 R9 R10

R02 R03
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+
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−

L12

L34
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L
4
1

L
4
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ρ

η

P1P2

η+

η−

Figure 6. The bifurcation diagram of system (7) when δ = 1.

and the straight lines L0+, L0− and

L44 = {(ρ, a2 − b2) : ρ = −1, a2 − b2 < 0},
L45 = {(ρ, a2 − b2) : ρ = −1, 0 < a2 − b2},

shown in Figure 7.

Proposition 9. Systems (7) has the following finite singular points if
its parameters (ρ, a2 − b2) are in

(R1 ∪ R2) a saddle N+ and a center N−, or a center N+ and a saddle N−.
(R5) four singular points: a stable node M+, an unstable node M−,

and two saddles N±.
(R6) four singular points: a stable node M+, an unstable node M−,

and a saddle N+ and a center N−.
(R7) four singular points: two saddles M±, a center N+ and a saddle

N−.
(R9) four singular points: a stable node M−, an unstable node M+,

a saddle N+ and a center N−.
(R10) four singular points: three saddles M± and N−, and a center

N+.
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ρ

η

Ω1 Ω2
Ω3

Ω4Ω5Ω6 L
4
5 L

0
+

L
4
4

L
0
−

Figure 7. The bifurcation diagram of sysetem (7) when
δ = 0.

(Ω1 ∪ R8) four singular points: an unstable node M0
+ or M+, a stable node

M0
− or M−, and saddles N0

± or N±.
(Ω2 ∪ R02 ∪ L44) two singular points: an unstable node M0

+ or M+, and a stable
node M0

− or M−.
(Ω3 ∪ R03) two singular points: M0

± or M± are saddles.
(Ω4 ∪ R4) two singular points: saddles N0

± or N±.
(Ω5 ∪ R3) two singular points: centers N0

± or N±.
(Ω6 ∪ R01 ∪ L45) no singular points.

(L0 + ∪L0−) all singular points on the hyperbola H.
(L11 ∪ L12) a nilpotent cusp N .

(L21) three singular points: an unstable node M+, a stable node M−,
and a nilpotent cusp N .

(L22) three singular points: two saddles M±, and a nilpotent cusp N .
(L31) two singular points: a nilpotent singular point M± = N− =

(1, 0) union of one elliptic sector with one hyperbolic sector,
and a hyperbolic saddle N+ = (−1/(ρ+ 1), 0).

(L32) two singular points: a nilpotent singular point M± = N+ =
(1, 0) union of one elliptic sector with one hyperbolic sector,
and a hyperbolic saddle N− = (−1/(ρ+ 1), 0).

(L33) two singular points: a nilpotent singular point M± = N+ =
(1, 0) union of one elliptic sector with one hyperbolic sector,
and a center N− = (−1/(ρ+ 1), 0).

(L34) two singular points: a nilpotent saddle M± = N+ = (1, 0), and
a hyperbolic saddle N− = (−1/(ρ+ 1), 0).

(L41) three singular points: a saddle N c, an unstable hyperbolic node
M+, and a stable hyperbolic node M−.
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(L42) three singular points: a saddle N c, an unstable hyperbolic node
M−, and a stable hyperbolic node M+.

(L43) a center N c.
(P1) M± = N± = (1, 0) is a nilpotent singular point formed by one

elliptic sector, one hyperbolic sector and two parabolic sectors.
(P2) M± = N± = (1, 0) is a degenerated singular point formed by

two parabolic sectors and two hyperbolic sectors.

Proof. On L0+ and L0− we have ρ = 0. Hence the straight lines x =
constant are invariant of system (7), and the hyperbola (4) is filled with
singular points, see the phase portraits for L0+ and L0− in Fig. 2.

In the following we always assume ρ �= 0.

(A). Assume δ = 1 and distinguish two cases in the study of the
finite singular points of system (7).

Case 1: On the invariant straight line x = 1. There are two singular
points M± of system (7) when a2− b2 < 1; They coincide into a unique
singular point M(1, 0) when a2 − b2 = 1, and no singular point when
a2 − b2 > 1, see (14).

Subcase 1.1: a2− b2 < 1. The Jacobian matrix of system (7) at M± are⎛
⎜⎝

ρ(a2 − b2)y∗±
a2

0

0 −2(a2 − b2)y∗±
a2

⎞
⎟⎠ .

Therefore M± are saddles if ρ > 0, and M+ is a stable hyperbolic node
and M− is an unstable hyperbolic node if ρ < 0 and 0 < a2 − b2 < 1,
while M+ is an unstable hyperbolic node and M− is a stable hyperbolic
node if ρ < 0 and a2 − b2 < 0, see for more details Theorem 2.15 of [8]
where are described the local phase portraits of the hyperbolic singular
points.

Subcase 1.2: a2 − b2 = 1. The Jacobian matrix of system (7) at M is

JM =

(
0 0

ρ+ 2 0

)
.

When ρ �= −2, M is a nilpotent singular point. Using Theorem 3.5
of [8] for studying the local phase portraits of the nilpotent singular
points we get that M is a nilpotent saddle if ρ > 0, and if ρ < 0 and
different from −2 is union of one elliptic sector with one hyperbolic
sector.

When ρ = −2, N± and M meet with each other into a degenerated
singular point M . Using the polar blowing–up centered at M , i.e.
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x = r cos θ + 1 and y = r sin θ, system (7) writes

(17)
ṙ = −r2 sin θ(cos2(θ)(a2 + 1) + 1),

θ̇ = −r cos θ(cos2(θ)(a2 + 1)− 1).

The singular points of system (17) on {r = 0} are located at θ = ±π/2,
θk, where θk satisfies

(a2 + 1) cos2 θk = 1, k = 1, 2, 3, 4,

and −π < θ3 = θ1 − π < θ4 = θ2 − π < θ1 < θ2 = π − θ1 < π. All the
singularities on S1×{0} are hyperbolic. Then (0, π/2) is a stable node
(0,−π/2) an unstable node and θk saddles. Doing a blowing down we
obtain that M is formed by the union of two hyperbolic sectors and
four parabolic sectors, see the phase portrait P2 in Figure 2.

Case 2: Singular points on the straight line y = 0.

When a2 − b2 < 0 the singular points N± or N are located between
the two branches of the hyperbola. When a2 − b2 > 0 it is easy to
check that there are two singular points N± on y = 0 if and only if
(ρ, a2−b2) ∈ R1∪R2∪· · ·∪R7∪L31∪· · ·∪L34. The singular points N±
coincide with N on y = 0 if and only if (ρ, a2−b2) ∈ L11∪L12∪L21∪L22,
and with N c if and only if ρ = −1. It is important for the phase
portraits the location of the singular points N± or N and of the two
branches of the hyperbola, see Figures 2, 3 and 6.

Subcase 2.1: The distribution of the singular points on y = 0.

If a2 − b2 > 0, it is easy to check that

(18)
(x∗

+ ±√
a2 − b2)(x∗

− ±√
a2 − b2) =

ρ
√
a2 − b2

ρ+ 1
(
√
a2 − b2 ∓ 1),

(x∗
+ − 1)(x∗

− − 1) =
1− (a2 − b2)

ρ+ 1
.

which implies that in R1 ∪R2, that is when a2 − b2 > 1 and ρ < −1,
the singular points N± are located at the same side of the hyperbola
H and of the line L given in (5). Furthermore, we have from (14) that

x∗
− >

ρ

2(ρ+ 1)
> 1, for − 2 < ρ < −1,

and

x∗
− <

ρ−√ρ2 + 4(ρ+ 1)

2(ρ+ 1)
= 1, for ρ < −2,

Similarly, in R3, that is when a2 − b2 > 1 and 1 < ρ < 0, the singular
points N± are located at the two sides of the hyperbola H and of the
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line L, respectively. In R4, that is when a2 − b2 > 1 and ρ > 0, the
singular points N± are located at the same side of the hyperbola H,
while in the two sides of the line L, respectively.
In fact we have that −√

a2 − b2 < x∗
+ < x∗

− < 1 in R1, 1 <√
a2 − b2 < x∗

+ < x∗
− in R2, x

∗
− < −√

a2 − b2 <
√
a2 − b2 < x∗

+ in

R3, and −√
a2 − b2 < x∗

− < 1 < x∗
+ <

√
a2 − b2 in R4.

In the same way we can obtain that −√
a2 − b2 < x∗

+ <
√
a2 − b2 <

1 < x∗
− in R5, x

∗
− < −√

a2 − b2 < x∗
+ <

√
a2 − b2 < 1 in R6, and

−√
a2 − b2 < x∗

− <
√
a2 − b2 < x∗

+ < 1 in R7.

For a2 − b2 < 0 it follows from (14) and (18) that x∗
+ < 0 < 1 < x∗

−
in R8, x

∗
− < x∗

+ < 0 in R9, and 0 < x∗
− < x∗

+ < 1 in R10.

On the curves L11∪L12∪L21∪L22, if Δ = 0, then the singular points
N± meet into a unique singular point N on y = 0, i.e. x∗

± = x∗. In

view of (16) it follows that 0 < x∗ < 1 in L11 ∪ L22, x
∗ >

√
a2 − b2 in

L12, and x∗ < 0 in L21.

If a2 − b2 = 1 then 0 < x∗
+ = −1/(ρ+ 1) < x∗

− = 1 in L31, 1 = x∗
+ <

x∗
− = −1/(ρ+ 1) in L32, x

∗
− = −1/(ρ+ 1) < −1 < x∗

+ = 1 in L33, and
−1 < x∗

− = −1/(ρ+ 1) < x∗
+ = 1 in L34.

Subcase 2.2: Classification of the singular points.

If a2−b2 = 1 there are two singular points on y = 0, N− andM = N+

for ρ > −2, while N+ and M = N− for ρ < −2. The singular point M
is also on the invariant straight line x = 1, which has been studied in
Subcase 1.2. The Jacobian matrix of system (7) at the other singular
point N+ or N− is

J =

⎛
⎝ 0 − ρ(ρ+ 2)

a2(ρ+ 1)
−(ρ+ 2) 0

⎞
⎠ .

Using the fact that system (7) is reversible with respect to the x–axis
from Remark 5, we can obtain that N+ is a saddle in L31, N− a saddle
in L32 ∪ L34, and N− a center in L33.

If ρ �= −1 and Δ > 0, then system (7) has two singular points
N± = (x∗

±, 0) on y = 0, see (14). The Jacobian matrix of system (7) at
the points N± is

(19) J =

⎛
⎜⎝ 0

ρ(a2 − b2)

a2
(x∗

± − 1)

±√
Δ

a2 − b2
0

⎞
⎟⎠ .
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It is easy from Remark 5 to prove that N+ is a saddle and N− a center
in R1 ∪R6 ∪R9, N+ is a center and N− a saddle in R2 ∪R7 ∪R10, N±
are centers in R3, and N± are saddles in R4 ∪ R5 ∪R8.

If Δ = 0 we have from (16) that η = η±(ρ), and from (19) the
singular point N = (x∗, 0) is nilpotent. Taking (x, y) = (X + x∗, Y ),
after (X, Y ) = (x, y), and rescaling the independent variable t by τ =
ρ3(ρ+ 2)t/(8a2(ρ+ 1)2), we obtain

ẋ = y − 2(ρ+ 1)

ρ+ 2
xy,

ẏ = −32
(ρ+ 1)4a2

ρ5(ρ+ 2)
x2 +

2(ρ+ 1)

ρ(ρ+ 2)
y2.

By Theorem 3.5 of [8] the origin of the previous system is a cusp in
L11 ∪ L12 ∪ L21 ∪ L22.

If ρ = −1 system (7) has a singular point N c on y = 0. The Jacobian
matrix of system (7) at the point N c is

J =

⎛
⎜⎝ 0 −(a2 − b2)(a2 − b2 − 1)

a2
1

a2 − b2
0

⎞
⎟⎠ ,

which implies that N c is a saddle in L41 ∪ L42, and a center in L43.
If a2 − b2 = 1 system (7) has a unique singular point M = N c at P1,
which is union of one elliptic sector with one hyperbolic sector as in
the proof in Subcase 1.2.

(B). Assume δ = 0. There are two singular points M0
± on x = 0 and

two singular points N0
± on y = 0 when a2 − b2 < 0 and ρ < −1, two

singular points M0
± on x = 0 when a2 − b2 < 0 and −1 ≤, two singular

points N0
± on y = 0 outside of the two branches of hyperbola when

a2 − b2 > 0 and −1 < ρ < 0, and two singular points N0
± on y = 0

between the two branches of hyperbola when a2 − b2 > 0 and ρ > 0.
There is no singular point when a2 − b2 > 0 and ρ ≤ −1. See (15) in
Proposition 8 and Figure 3.

The Jacobian matrices of system (7) at the points M0
± and N0

± are⎛
⎜⎝

ρ(a2 − b2)y0±
a2

0

0 −2(a2 − b2)y0±
a2

⎞
⎟⎠ ,

⎛
⎜⎝ 0

ρ(a2 − b2)

a2
x0
±

2(ρ+ 1)

a2 − b2
x0
± 0

⎞
⎟⎠ ,

respectively. Similarly it is easy to obtain that M± are saddles in Ω3,
andM+ is an unstable node, and M− a stable node in Ω1∪Ω2∪L44, N±
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are saddles in Ω1 ∪Ω4, N± are centers in Ω5, and there are no singular
points in Ω6 and L45. �

4.2. The infinite singular points.

Proposition 10. The following two statements hold.

(a) If ρ �= −1 system (7) has two pairs one of infinite saddles and
the other of nodes if ρ < 0, and two pairs of nodes if ρ > 0.

(b) If ρ = −1 the infinity of system (7) is filled of singular points.

Proof. Notice a2 − b2 �= 0 for system (7). Doing the Poincaré transfor-
mation (9) and the time rescaling t = vτ , system (7) in the local chart
(9) is

(20)
u̇ = −v2 +

(
(a2 − b2)u2

a2
− 1

a2 − b2

)
(δρv − (ρ+ 1)) ,

v̇ = ρ
a2 − b2

a2
u(δv − 1)v.

First considering the infinite singular of system (7) with δ = 1. If

ρ �= −1 there is two singular points PN

(
± a

a2 − b2
, 0

)
of system (20)

on v = 0. The eigenvalues of the Jacobian matrice at PN are ∓2(ρ+ 1)

a
and ∓ρ

a
, which implies that system (7) has two pairs of nodes if ρ < −1

or 0 < ρ, and two pairs of infinite saddles if −1 < ρ < 0.

Furthermore, taking the Poincaré transformation (11) and the time
rescaling t = vτ , system (7) in the local chart (11) is

(21)
u̇ = uv2 +

(
u2

a2 − b2
− a2 − b2

a2

)
(δρv − (ρ+ 1)u),

v̇ = v3 +
δρuv2

a2 − b2
+

(
a2 − b2

a2
− (ρ+ 1)u2

a2 − b2

)
v.

We first consider system (7) with δ = 1. If ρ �= −1 the origin is a
singular point of (21). It is easy to get that the eigenvalues of the

Jacobian matrix at the origin are
a2 − b2

a2
(ρ + 1) and

a2 − b2

a2
, which

implies that system (7) has a pair of infinite saddles if ρ < −1, and a
pair of nodes if ρ > −1.

If ρ = −1 from (20) and (21) the infinity v = 0 of the Poincaré disc is
filled with singular points. Furthermore we claim that the orbits from
the infinity will go to the singular points M±. Now we prove the claim.
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In fact, when ρ = −1 we reduce the common factor v of the vector field
of system (20), then we writes it as

(22)
u̇ = −v −

(
(a2 − b2)u2

a2
− 1

a2 − b2

)
,

v̇ = −a2 − b2

a2
u(v − 1).

We obtain the following first integral of system (22)

H(u, v) := (v−1)−2

(
u2 +

2a2

a2 − b2
v − a2(1 + a2 − b2)

(a2 − b2)2

)
= (v−1)−2h(u, v).

If a2 − b2 < 1 system (22) has a pair of singular points (u, v) = M±,
which are in fact, the singular points of system (7) in the finite plane,
see (14). Noting that M± are located on the invariant straight line
v − 1 = 0, and h(u, v)|M± = 0, we know that M± have to be located
on the curve H(u, v) = c for any c ∈ R, especially on the curve going
through v = 0, see (a) in Figure 8.

We complete the proof of our claim. The phase portraits of system
(7) in L41∪L42 are shown in Figure 2. In L43 system (7) has no singular
point on v − 1 = 0, so any curve H(u, v) = c does not intersect with
the line v − 1 = 0.

Next we study the infinite singular points of system (7) with δ = 0 .
Taking δ = 0 in system (20) and (21), we obtain two singular points PN

of system (20), and the singular point (0, 0) of system (21) if ρ �= −1.
In a similar way as the above, we can get that their singular points
have the same properties as the systems with δ = 1. But if ρ = −1
system (7) in the local chart (9) is

(23)
u̇ = −v2,

v̇ =
a2 − b2

a2
uv.

So the infinity v = 0 of the Poincaré disc is filled with singular points.
System (23) is equivalent to a linear differential system with a saddle
if a2 − b2 < 0, or with a center if a2 − b2 > 0, and in both case with a
straight line filled by singularities, see the phase portraits (b) and (c)
in Figure 8.

�

Proof of the phase portraits Figures 2 and 3 of system (7) in Theorem 3.
According to Theorem 2, Propositions 7, 9 and 10, and using the in-
variant straight line x = δ with δ = 0, 1 and the invariant hyperbola H
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uu u

v
v v

M+

M−

(a) (b) (c)

Figure 8. Infinite singular points of system (7) for ρ = −1.

in (5), we obtain the global phase portraits of system (7) in Poincaré
disc described in Figure 2 and 3.

�
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