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Abstract. In this paper we study the limit cycles of the third–order differen-

tial equation
...
x − µẍ+ ẋ− µx = εF (x, ẋ, ẍ, t) where µ 6= 0, ε is small enough

and F ∈ C2 is a 2π–periodic function of variable t.

1. Introduction and statement of the main results

One of the main problems in the theory of differential equations is the study
of their periodic orbits, their existence, their number and their stability. As usual
a limit cycle of a differential equation is a periodic orbit isolated in the set of all
periodic orbits of the differential equation.

In this paper we study the limit cycles of the following class of third–order
ordinary differential equations

(1)
...
x − µẍ+ ẋ− µx = εF (x, ẋ, ẍ, t),

where µ 6= 0 and the dot means derivative with respect to the variable t, ε is small
enough and F ∈ C2 is a 2π–periodic function of variable t. Here the variables x
and t, and the parameters µ and ε are real.

There are many papers studying the periodic orbits of third–order differential
equations. Thus our class of equations is not far from the ones studied in [13] and
[3]. But our main tool for studying the periodic orbits of equation (1) is completely
different to the tools of the mentioned papers. We shall use the averaging theory,
more precisely the Theorem 5 of the Appendix. Many of the papers dealing with
the periodic orbits of third–order differential equations use Schauder’s or Leray–
Schauder’s fixed point theorem, see for instance [5, 8, 9], or the nonlocal reduction
method see [2], and others [6].

In order to state our main result we need some preliminaries. We define

f1(X0, Y0) =

∫ 2π

0

sin t F

(
µX(t)− Y (t)

1 + µ2
,−X(t) + µY (t)

1 + µ2
,
−µX(t) + Y (t)

1 + µ2
, t

)
dt,

f2(X0, Y0) =

∫ 2π

0

cos t F

(
µX(t)− Y (t)

1 + µ2
,−X(t) + µY (t)

1 + µ2
,
−µX(t) + Y (t)

1 + µ2
, t

)
dt,

where

(2) X(t) = X0 cos t− Y0 sin t, Y (t) = Y0 cos t+X0 sin t.

Our main result is the following.
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Theorem 1. If there exists (X0, Y0) ∈ R2 such that f1(X0, Y0) = f2(X0, Y0) = 0
and det

(
∂(f1, f2)/∂(X0, Y0)

)
6= 0, then for ε ∈ [−ε0, ε0] with ε0 > 0 sufficiently

small there is a 2π–periodic solution x(t, ε) of the third–order differential equation
(1) such that(

x(0, ε), ẋ(0, ε), ẍ(0, ε)
)
→
(
µX0 − Y0

1 + µ2
,
−X0 − µY0

1 + µ2
,
−µX0 + Y0

1 + µ2

)
as ε→ 0. Moreover, for ε ∈ [−ε0, ε0]\{0} the 2π–periodic solution x(t, ε) is a limit
cycle.

Theorem 1 will be proved in Section 2.

The linear differential equation of third–order
...
x − µẍ + ẋ − µx = 0 provides a

linear system in R3 having a 2-dimensional center. Theorem 1 reduces the study
of the limit cycles of the differential equation of third–order (1) bifurcating from
the periodic orbits of that center to find the nondegenerate zeros of the system of
two equations and two unknowns given by f1(X0, Y0) = f2(X0, Y0) = 0. The zeros
are nondegenerate in the sense that the Jacobian of the system on them must be
nonzero. In general the problem of finding the zeros of two nonlinear equations
with two unknowns is not easy, but of course is easier than to look for the periodic
orbits directly.

Using Theorem 1 we have studied the limit cycles of some third–order differential
equations. Thus in the next result we present a third–order differential equation
(1) having as many limit cycles as we want.

Proposition 2. We consider the third–order differential equation

(3)
...
x − ẍ+ẋ− x = ε cos(x+ t).

Then for all positive integer m there is εm > 0 such that if ε ∈ [−εm, εm] \ {0}
equation (3) has at least m limit cycles.

Proposition 2 will be proved in Section 3.

The following third–order differential equation (1) only has finitely many limit
cycles obtained using Theorem 1. As usual [·] denotes the integer part function.

Proposition 3. We consider the third–order differential equation

(4)
...
x − ẍ+ẋ− x = ε

( n∑
i+ j + k = 0

i, j, k ≥ 0

aijkx
iẋj ẍk + cos t

)
.

Then for ε 6= 0 sufficiently small equation (4) has at least m ∈ {1, 2, . . . , 2[(n −
1)/2] + 1} limit cycles choosing conveniently the coefficients aijk.

Proposition 3 will be proved in Section 4.

The third–order differential equation studied in the next proposition when µ = ε
is close to the equation studied in the example 1 of [3]. Moreover that equation
without the term (cos t)/2 is the equation of the Ezeilo problem mentioned in [2].

Proposition 4. We consider the third–order differential equation

(5)
...
x − µẍ+ẋ− µx = ε

(
sinx− x+

1

2
cos t

)
.

Then for ε 6= 0 sufficiently small equation (5) has at least two limit cycles.
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Proposition 4 will be proved in Section 5. As we shall see in its proof Theorem 1
applied to equation (5) provides at most one limit cycle bifurcating from the linear
center of system (5) with ε = 0. But eventually equation (5) can have for ε 6= 0
other limit cycles which do not bifurcate from the mentioned linear center.

2. Proof of Theorem 1

If y = ẋ and z = ẍ, then system (1) can be written as

(6)
ẋ = y,
ẏ = z,
ż = µx− y + µz + εF (x, y, z, t).

The origin (0, 0, 0) is the unique singular point of system (6) when ε = 0. The
eigenvalues of the linearized system at this singular point are ±i and µ. By the
linear invertible transformation (X,Y, Z)T = C(x, y, z)T , where

C =

 µ −1 0
0 −µ 1
1 0 1

 ,

we transform the system in another such that its linear part is the real Jordan
normal form of the linear part of system (6) with ε = 0, i.e.

(7)

Ẋ = −Y,
Ẏ = X + εF̃ (X,Y, Z, t),

Ż = µZ + εF̃ (X,Y, Z, t),

where

F̃ (X,Y, Z, t) = F

(
µX − Y + Z

1 + µ2
,
−X − µY + µZ

1 + µ2
,
−µX + Y + µ2Z

1 + µ2
, t

)
.

Using the notation introduced in the Appendix we have that x = (X,Y, Z),

F0(x, t) = (−Y,X, µZ), F1(x, t) = (0, F̃ , F̃ ) and F2(x, t) = 0. Let x(t;X0, Y0,
Z0, ε) be the solution of system (7) such that x(0;X0, Y0, Z0, ε) = (X0, Y0, Z0).
Clearly the unperturbed system (7) with ε = 0 has a linear center at the origin in
the (X,Y )–plane, which is an invariant plane under the flow of the unperturbed
system, and the periodic solution x(t;X0, Y0, 0, 0) = (X(t), Y (t), Z(t)) is

(8) X(t) = X0 cos t− Y0 sin t, Y (t) = Y0 cos t+X0 sin t, Z(t) = 0.

Note that all these periodic orbits have period 2π.

For our system the V and the α of Theorem 5 of the Appendix are V =
{(X,Y, 0) : 0 < X2 + Y 2 < ρ} for some arbitrary ρ > 0 and α = (X0, Y0) ∈ V .

The fundamental matrix solution M(t) of the variational equation of the unper-
turbed system (7)ε=0 with respect to the periodic orbits (8) satisfying that M(0)
is the identity matrix is

M(t) =

 cos t − sin t 0
sin t cos t 0

0 0 eµt

 .
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We remark that it is independent of the initial condition (X0, Y0, 0). Moreover an
easy computation shows that

M−1(0)−M−1(2π) =

 0 0 0
0 0 0
0 0 1− e−2πµ

 .

In short we have shown that all the assumptions of Theorem 5 of the Appendix
hold. Hence we shall study the zeros α = (X0, Y0) ∈ V of the two components of
the function F(α) given in (22). More precisely we have F(α) = (F1(α),F2(α))
where

F1(α) =

∫ 2π

0

sin tF̃ (x(t;X0, Y0, 0, 0), t)dt

=

∫ 2π

0

sin tF

(
µX(t)− Y (t)

1 + µ2
,−X(t) + µY (t)

1 + µ2
,
−µX(t) + Y (t)

1 + µ2
, t

)
dt,

F2(α) =

∫ 2π

0

cos tF̃ (x(t;X0, Y0, 0, 0), t)dt

=

∫ 2π

0

cos tF

(
µX(t)− Y (t)

1 + µ2
,−X(t) + µY (t)

1 + µ2
,
−µX(t) + Y (t)

1 + µ2
, t

)
dt,

where X(t), Y (t) are given by (8). Now the rest of the proof of Theorem 1 follows
directly from the statement of Theorem 5 in Appendix.

3. Proof of Proposition 2

First we consider the third–order differential equation (3). For this equation we
have that

f1(X0, Y0) =

∫ 2π

0

sin t cos

(
t+

(X0 − Y0) cos t− (X0 + Y0) sin t)

2

)
dt,

f2(X0, Y0) =

∫ 2π

0

cos t cos

(
t+

(X0 − Y0) cos t− (X0 + Y0) sin t)

2

)
dt.

To simplify the computation of these two previous integrals we do the change of
variables (X0, Y0) 7−→ (r, s) given by

(9) X0 − Y0 = 2r cos s, X0 + Y0 = −2r sin s,

where r > 0 and s ∈ [0, 2π). From now on and until the end of the paper we write
f1(r, s) instead of

f1(X0, Y0) = f1
(
r(cos s− sin s),−r(cos s+ sin s)

)
.

Similarly for f2(r, s).

We compute the two previous integrals and we get

(10)
f1(r, s) = −πJ2(r) sin 2s,

f2(r, s) = 2π

(
1

r
J1(r)− J2(r) cos2 s

)
,

where J1 and J2 are the first and second Bessel functions of first kind. These com-
putations become easier with the help of an algebraic manipulation as Mathematica
or Maple.
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Using the asymptotic expressions of the Bessel functions of first kind it follows
that Bessel functions J1(r) and J2(r) have different zeros. Hence fi(r, s) = 0 for
i = 1, 2 imply that either s ∈ {0, π/2, π, 3π/2}. Therefore we have to study the
zeros of

(11) f2(r, 0) = f2(r, π) = 2π

(
1

r
J1(r)− J2(r)

)
,

(12) f2(r, π/2) = f2(r, 3π/2) =
2π

r
J1(r).

We claim that function (11) has also infinite zeros for r ∈ (0,∞). Note that if ρ
is sufficiently large, and we choose r < ρ also sufficiently large, then

Jn(r) ≈
√

2

πr
cos
(
r − nπ

2
− π

4

)
for n = 1, 2,

are asymptotic estimations, see [1]. Considering (11) for r sufficiently large we
obtain that

f2(r, 0) ≈ 2

r

√
2π

r

(
cos

(
r − 3π

4

)
+ r cos

(
r − π

4

))
=

2

r

√
π

r
((r − 1) cos r + (r + 1) sin r).

The above function has infinite zeros because the equation

tan r =
1− r
r + 1

has infinitely many solutions.

For every zero r0 > 0 of the function (11) we have two zeros of system (10),
namely (r, s) = (r0, 0) and (r, s) = (r0, π).

We have from (10) that∣∣∣∣∂(f1, f2)

∂(r, s)

∣∣∣∣
(r,s)=(r0,0)

=
4π2(J0(r0)r0 − 2J1(r0))(J0(r0)r0 + (r20 − 2)J1(r0))

r30

=
4π2

r0
J2(r0)(J1(r0)r0 − J2(r0)),(13)

where we have used several relation between the Bessel functions of first kind, see
[1]. Clearly it is impossible that (11) and (13) are equal to zero at the same time.
Therefore by Theorem 1 there is a periodic orbit of system (3) for each (r0, 0), that
is for each value of (X0, Y0) = (r0,−r0).

In an analogous way there is a periodic orbit of system (3) for each (r0, π), that
is for each value of (X0, Y0) = (−r0, r0). In fact, the periodic orbit with this initial
conditions and the previous one with initial conditions (X0, Y0) = (r0,−r0) are the
same.

Similarly since J1(r) has infinitely many zeros (see [1]), the function (12) has
infinitely many positive zeros r1. Every one of these zeros provides two solutions
of system (10), namely (r, s) = (r1, π/2) and (r, s) = (r1, 3π/2).

Moreover we have from (10) that

(14)

∣∣∣∣∂(f1, f2)

∂(r, s)

∣∣∣∣
(r,s)=(r1,π/2)

=
4π2

r1
J2
2 (r1) 6= 0.
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Therefore by Theorem 1 there is a periodic orbit of system (3) for each (r1, π/2),
that is for each value of (X0, Y0) = (−r1,−r1).

In an analogous way there is a periodic orbit of system (3) for each (r1, 3π/2),
that is for each value of (X0, Y0) = (r1, r1). In fact, the periodic orbit with this
initial conditions and the previous one with initial conditions (X0, Y0) = (−r1,−r1)
are the same.

Taking the radius ρ of the disc V = {(X0, Y0, 0) : 0 < X2 + Y 2 < ρ} in the
proof of Theorem 1 conveniently large we include in it as many zeros of the system
f1(X0, Y0) = f2(X0, Y0) = 0 as we want, so from Theorem 1, Proposition 2 follows.

4. Proof of Proposition 3

Now we consider the third–order differential equation (4). In order to estimate
the number of the periodic solutions of equation (4), according with Theorem 1 we
study the solutions of f1(X0, Y0) = f2(X0, Y0) = 0.

For our equation the function F which appears in the integrals of the definitions
of the functions f1 and f2 is

F

(
X(t)− Y (t)

2
,−X(t) + Y (t)

2
,
−X(t) + Y (t)

2
, t

)
.

Therefore from the change (9) and the expressions (2), a monomial xiyjzk which
appears in F (x, y, z, t) becomes (−1)kri+j+k cosi+k(s − t) sinj(s − t). Hence we
obtain the following expressions

f1(r, s) =

∫ 2π

0

sin t

n∑
i+j+k=0

(−1)kaijk r
i+j+k cosi+k(s− t) sinj(s− t)dt,

f2(r, s) =

∫ 2π

0

cos t

n∑
i+j+k=0

(−1)kaijk r
i+j+k cosi+k(s− t) sinj(s− t)dt+ π.

Taking u = s− t the functions f1 and f2 can be written as

(15)
f1(r, s) = I1(r) sin s− I2(r) cos s,
f2(r, s) = I1(r) cos s+ I2(r) sin s+ π,

where

I1(r) = −
∫ 2π

0

cosu

n∑
i+j+k=0

(−1)kaijk r
i+j+k cosi+k u sinj u du

=

n∑
i+j+k=0

(−1)k+1aijk r
i+j+k

∫ 2π

0

cosi+k+1 u sinj u du,

I2(r) = −
∫ 2π

0

sinu

n∑
i+j+k=0

(−1)kaijk r
i+j+k cosi+k u sinj u du

=

n∑
i+j+k=0

(−1)k+1aijk r
i+j+k

∫ 2π

0

cosi+k u sinj+1 u du.

Using symmetries the integral
∫ 2π

0
cosp u sinq u du is not zero if and only if p and q

are even. Hence I1(r) and I2(r) are polynomials in r having all their monomials of
odd degree. Moreover if n is even the degree in the variable r of the polynomials
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I1(r) and I2(r) is n− 1, and if n is odd that degree is n. So their degree always is
odd and equal to 2[(n− 1)/2] + 1. Of course we are playing with the fact that the
coefficients of those polynomials can be chosen arbitrarily.

It is clear that the system f1 = f2 = 0 given by (15) is equivalent to the system

(16)

(
I1(r)
I2(r)

)
=

(
sin s − cos s
cos s sin s

)−1(
0
π

)
= π

(
cos s
sin s

)
.

We claim that (16) has at most 2[(n−1)/2]+1 solutions providing different limit
cycles of the third–order differential equation (4), and that this number is reached.

For proving the claim first we observe that system (16) is equivalent to the system

(17) I21 (r) + I22 (r) = π2,
I2(r)

I1(r)
= tan s.

Since the first equation of system (17) is a polynomial equation in the variable r2

of degree 2[(n−1)/2]+1 playing with the fact that the coefficients of the polynomials
I1(r) and I1(r) are arbitrary, it follows that it has at most 2[(n − 1)/2] + 1 zeros
in (0,∞), and we can choose the coefficients aijk such that it has exactly m simple
zeros ri > 0 with m ∈ {1, 2, . . . , 2[(n− 1)/2] + 1}.

There are two solutions si and si + π in [0, 2π) of the second equation for each
zero ri > 0 of the first equation of (17). But as in the proof of Proposition 2 these
two solutions only provide two different initial conditions of the same periodic orbit.
In short applying Theorem 1 we would get at most 2[(n− 1)/2] + 1 limit cycles for
the third–order differential equation (4) if the Jacobian det

(
∂(f1, f2)/∂(r, s)

)
6= 0

at (r, s) = (ri, si).

Playing with the coefficients aijk we get

(18) I1(ri)I
′
1(ri) + I2(ri)I

′
2(ri) 6= 0,

for every solution (ri, si) of system (17). Then we compute the Jacobian of g1(r, s) =
I1(r)− π cos s and g2(r, s) = I2(r)− π sin s, i. e.∣∣∣∣∂(g1(r, s), g2(r, s))

∂(r, s)

∣∣∣∣
(r,s)=(ri,si)

= −π
(
I ′1(ri) cos si + I ′2(ri) sin si

)
= I1(ri)I

′
1(ri) + I2(ri)I

′
2(ri) 6= 0.

Hence it is easy to check that∣∣∣∣∂(f1(r, s), f2(r, s))

∂(r, s)

∣∣∣∣
(r,s)=(ri,si)

6= 0.

In short the claim is proved and consequently the Proposition 3.

5. Proof of Proposition 4

In this section we consider equation (5). We remark here that F (x, y, z, t) =
sinx− x+ cos t/2. Doing the change

µX0 − Y0 = (1 + µ2)r cos s, X0 + µY0 = −(1 + µ2)r sin s,
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where r > 0 and s ∈ [0, 2π). We compute the two integrals of f1 and f2 and we get

f1(r, s) =

∫ 2π

0

sin t(sin(r cos(t− s))− r cos(t− s))dt,

f2(r, s) =

∫ 2π

0

cos t(sin(r cos(t− s))− r cos(t− s))dt+
π

2
.

Taking u = t− s, then we have

f1(r, s) = sin s

(∫ 2π

0

cosu sin(r cosu) du− πr
)

= π(2J1(r)− r) sin s,

f2(r, s) = cos s

(∫ 2π

0

cosu sin(r cosu) du− πr
)

+
π

2
= π(2J1(r)− r) cos s+

π

2
.

It is clear that if f1(r, s) = 0 and f2(r, s)=0, then sin s = 0. Consequently we need
to estimate the zeros of the following function for s = 0 or π

g±(r) = ±
(∫ 2π

0

cosu sin(r cosu) du− πr
)

+
π

2
= ±π(2J1(r)− r) +

π

2
.

We claim that there is a unique zero of the function g±(r) for r > 0. For example
we note that for s = 0 and r > 0 we have that

g′+(r) =
dg+(r)

dr
=

∫ 2π

0

cos2 u cos(r cosu) du− π <
∫ 2π

0

cos2 u du− π = 0.

Hence our claim is true from the fact that g+(0) = π/2 > 0, g+(r) < 0 for r
sufficiently large and g+(r) is strictly decreasing. We denote by r± the unique zero
of the function g±(r) for r > 0.

Writing the zeros of f1 and f2 as (r+, 0) and (r−, π), we have that∣∣∣∣∂(f1(r, s), f2(r, s))

∂(r, s)

∣∣∣∣
(r,s)=(r0,0)

=
π

2
g′+(r0) < 0.

Similarly it can be shown that this Jacobian at the point (r0, π) is also different
from zero. This implies that the system f1(X0, Y0) = f2(X0, Y0) = 0 has two
solutions (X0, Y0) = r+(µ,−1) and (X0, Y0) = r−(−µ, 1) corresponding to (r+, 0)
and (r−, π) with Jacobian different from zero. Since r+ 6= r− these two solutions
provide distinct periodic orbit of the linear center from which it bifurcates one limit
cycle of equation (5). So Proposition 4 is proved.

6. Appendix

In this appendix we present the basic result from the averaging theory that we
shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from the
differential system

(19) x′(t) = F0(x, t) + εF1(x, t) + ε2F2(x, t, ε),

with ε = 0 to ε 6= 0 sufficiently small. The functions F0, F1 : Ω × R → Rn and
F2 : Ω × R × (−ε0, ε0) → Rn are C2 functions, T–periodic in the variable t, and
Ω is an open subset of Rn. One of the main assumptions is that the unperturbed
system

(20) x′(t) = F0(x, t),
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has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory. For a general introduction to the averaging theory see the
books of Sanders and Verhulst [11], and of Verhulst [12].

Let x(t, z) be the solution of the unperturbed system (20) such that x(0, z) = z.
We write the linearization of the unperturbed system along the periodic solution
x(t, z) as

(21) y′ = DxF0(x(t, z), t)y.

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (21), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first
k coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 5. Let V ⊂ Rk be open and bounded, and let β0 : Cl(V ) → Rn−k be a
C2 function. We assume that

(i) Z = {zα = (α, β0(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the
solution x(t, zα) of (20) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (21) such that
the matrix M−1zα (0) −M−1zα (T ) has in the right up corner the k × (n − k)
zero matrix, and in the right down corner a (n − k) × (n − k) matrix ∆α

with det(∆α) 6= 0.

We consider the function F : Cl(V )→ Rk

(22) F(α) = ξ

(∫ T

0

M−1zα (t)F1(x(t, zα), t)dt

)
.

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) 6= 0, then there is a
T–periodic solution ϕ(t, ε) of system (19) such that ϕ(0, ε)→ za as ε→ 0.

Theorem 5 goes back to Malkin [7] and Roseau [10], for a shorter proof see [4].
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