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ON THE INTEGRABILITY AND POLYNOMIAL

INTEGRABILITY OF THE EULER EQUATIONS

JAUME LLIBRE1, JIANG YU2 AND XIANG ZHANG2

Abstract. In this paper we show that the Euler equations in the Man-
akov or product cases are completely integrable. But our main results
prove that the Euler equations either satisfies the Manakov condition,
or have at most four functionally independent polynomial first integrals.
Also we provide necessary conditions in order that the Euler equations
can have a fourth functionally independent polynomial first integral.

1. Introduction and statement of the main results

Given a system of ordinary differential equations depending on parame-
ters, in general is very difficult to recognize for which values of the param-
eters the equations have first integrals. Except for some simple cases, this
problem is very hard and there are no satisfactory methods to solve it.

In this paper we study the first integrals of the Euler differential equa-
tions in R6 depending on six parameters. Because these equations are used
here exclusively as an interesting and nontrivial example of a multiparame-
ter family of ordinary differential equations, we consider them without any
explanations of their origin, which can be found for instance in the refer-
ences [1, 2, 3, 10, 11, 14]. Here we discuss neither their physical origin, nor
their relevant information that can be found in the quoted references.

Before introducing the Euler equations we first recall some basic defini-
tions on the analytic and polynomial integrability of the polynomial differ-
ential systems of the form

(1)
dx

dt
= ẋ = P(x), x = (x1, · · · , xn) ∈ Rn,

with P(x) = (P1(x), · · · , Pn(x)) and Pi ∈ R[x1, · · · , xn] for i = 1, · · · , n.
As usual R denotes the set of real numbers, and R[x1, · · · , xn] denotes the
polynomial ring over R in the variables x1, · · · , xn.

A non–constant function H(x1, . . . , xn) is a first integral of system (1) on
an open subset Ω of Rn if it is constant on all solution curves (x1(t), · · · , xn(t))
of system (1) contained in Ω. If H is C1 on Ω, then H is a first integral of
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system (1) if and only if

n∑
i=1

Pi(x)
∂H

∂xi
(x) ≡ 0, for all x ∈ Ω.

If H is a first integral of (1) and is analytic (resp. polynomial), then it is
called an analytic (resp. a polynomial) first integral.

The first integrals H1, . . . ,Hr of the differential system (1) with r < n are
functionally independent if the r × n matrix

∂H1

∂x1
· · · ∂H1

∂xn
... · · ·

...
∂Hr

∂x1
· · · ∂Hr

∂xn

 (x)

has rank r at all points x ∈ Rn where they are defined with the exception
(perhaps) of a zero Lebesgue measure set. Moreover, the differential system
(1) is completely integrable if it has H1, . . . ,Hn−1 first integrals functionally
independent.

The Euler equations studied in this paper are

(2)

dx1

dt
= (λ3 − λ2)x2x3 + (λ6 − λ5)x5x6 = P1(x1, x2, x3, x4, x5, x6),

dx2

dt
= (λ1 − λ3)x1x3 + (λ4 − λ6)x4x6 = P2(x1, x2, x3, x4, x5, x6),

dx3

dt
= (λ2 − λ1)x1x2 + (λ5 − λ4)x4x5 = P3(x1, x2, x3, x4, x5, x6),

dx4

dt
= (λ3 − λ5)x3x5 + (λ6 − λ2)x2x6 = P4(x1, x2, x3, x4, x5, x6),

dx5

dt
= (λ4 − λ3)x3x4 + (λ1 − λ6)x1x6 = P5(x1, x2, x3, x4, x5, x6),

dx6

dt
= (λ2 − λ4)x2x4 + (λ5 − λ1)x1x5 = P6(x1, x2, x3, x4, x5, x6),

defined in R6. Note that these differential equations depend on six parame-
ters λ1, . . . , λ6.

It is well known that the Euler equations (2) have always the following
three polynomial first integrals of degree 2:

H1 = x1x4 + x2x5 + x3x6, H2 =

6∑
i=1

x2
i , H3 =

1

2

6∑
i=1

λix
2
i ,

which are functionally independent unless λ1 = . . . = λ6.

One additional fourth polynomial first integral of degree 2 functionally
independent of the first three is known for the Euler equations if the pa-
rameters satisfy some conditions, more precisely in the product condition
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when
λ4 = λ1, λ5 = λ2, λ6 = λ3,

or in the Manakov condition when

(3) M = λ1λ4(λ23 + λ56) + λ2λ5(λ31 + λ64) + λ3λ6(λ12 + λ45) = 0.

Thus in the product case the Euler equations have the first integral

H5 = λ1x1x4 + λ2x2x5 + λ3x3x6.

and in the Manakov case the Euler equations have the first integral

H4 = λ16λ24x
2
4 + λ15λ26x

2
5 + λ16λ26x

2
6,

here and in what follows for simplifying the notation we denote

λij = λi − λj for i, j ∈ {1, . . . , 6}.
Maciejewski, Popov and Strelcyn in [9] provided explicitly all values of the

parameters inside the Manakov and the product cases for which the Euler
equations have a fourth polynomial first integral functionally independent
of the three known integrals. In [12] Popov and Strelcyn proved that if the
Euler equations have a rational first integral functionally independent of the
known three ones, then they have a polynomial first integral that is also
functionally independent of them. Popov, Respondek and Strelcyn in [13]
presented a simpler proof of the result of [12].

Our first result on the integrability of the Euler equations is the next one.

Theorem 1. The Euler equations satisfying either the Manakov or the prod-
uct conditions are completely integrable.

Theorem 1 is proved in section 2.

The complete characterization of all polynomial first integrals of the Eu-
ler equations (2) is not known, but Popov and Strelcyn in [12] stated the
following:

Conjecture: The Euler equations have a fourth polynomial first integral
functionally independent of H1, H2 and H3 only either in the Manakov case
or in the product case.

This conjecture remains open. Related to it we have the following result.

Theorem 2. The Euler equations (2) either satisfy the Manakov condition,
or have at most four functionally independent polynomial first integrals.

Theorem 2 is proved in section 3.

We remark that from the proof of Theorem 2, the result of this theorem
can be stated for analytic first integrals instead of polynomial first integrals.

We consider the system of polynomial equations

(4) Pi(c1, c2, c3, c4, c5, c6) + ci = 0, for i = 1, . . . , 6,

where P1, . . . , P6 are defined in (2). The non–zero solutions (real or com-
plex) of this system of polynomial equations defines the balances of the Euler
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equations (2) with the weight exponent (1, 1, 1, 1, 1, 1). The precise defini-
tions of balances and weight exponents are given in section 4.

We define

L1 = λ15λ16λ56, L2 = λ34λ35λ45, L3 = λ42λ26λ46, L4 = λ12λ13λ23.

Theorem 3. Assume that L1L2L3L4 6= 0. Then the Euler equations have
16 different balances Cij for i, j = 1, . . . , 4 given in (20).

(a) A necessary condition in order that the Euler equations have a poly-
nomial first integral H of degree m > 2 functionally independent of
the first integrals H1, H2 and H3 is that the gradient gradH satisfies
that either it is identically zero at all the 16 balances Cij, or that it
is not identically zero at some balance Ci0,j0 and M/Li0 = m2 −m.
Of course, if gradH is not identically zero at two balances Ci1,j1 and
Ci2,j2, then Li1 = Li2 = M/(m2 −m).

(b) A necessary condition in order that the Euler equations have a poly-
nomial first integral H of degree 2 functionally independent of the
first integrals H1, H2 and H3 is that gradH satisfies that either it
is linearly dependent on gradH1, gradH2 and gradH3 at all the 16
balances Cij, or that it is linearly independent of gradH1, gradH2

and gradH3 at some balance Ci0,j0 and M/Li0 = 2. Of course, if
gradH is linearly independent of gradH1, gradH2 and gradH3 at
two balances Ci1,j1 and Ci2,j2, then Li1 = Li2 = M/2.

The proof of Theorem 3 is given in section 4.

We remark that in the Manakov case the gradient of the first integral H4

is not identical zero at the balances C1j , C2j , C3j , and it is identically zero
at the balances C4j .

As we shall see in section 4 in the Manakov case the gradient of the first
integral H4 is linearly dependent on the gradients of H1, H2 and H3 at all
the balances Cij for i, j ∈ {1, . . . , 4}. But in the product case the gradient
of the first integral H5 is linearly independent of the gradients of H1, H2

and H3 at all the balances Cij for i, j ∈ {1, . . . , 4}.

We remark that Theorems 2 and 3 also hold when the Euler equations
are in C6 instead of R6, because their proofs also work in C6.

Finally we note that if L1L2L3L4 = 0, working in a similar way as in the
proof of Theorem 3 we can get a similar result to the one stated in that
theorem. But since the statement of this new theorem is too long (because
it must consider many different possibilities), and the results are not more
interesting than the results of Theorem 3, we decide do not include these
results in this paper.
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2. Proof of Theorem 1

For proving Theorem 1 we need to recall some classical results on inte-
grability due to Jacobi and Whittaker, see for instance the book of Goriely
[7].

Let J = J(x) be a non–negative C1 function non–identically zero on any
open subset of Rn, then J is a Jacobi multiplier of the differential system
(1) if

(5)

∫
Ω
J(x)dx =

∫
ϕt(Ω)

J(x)dx,

where Ω is any open subset of Rn and ϕt is the flow defined by the differential
system (1).

The following result is due to Jacobi, for a proof see Theorem 2.7 of [7].

Theorem 4. Consider the differential system (1) in Rn, and assume that
it admits a Jacobi multiplier J = J(x) and n− 2 first integrals functionally
independent. Then the system admits an additional first integral functionally
independent with the previous n − 2 first integrals. That is the differential
system (1) is completely integrable.

We recall that the divergence of the differential system (1) is
n∑
i=1

∂Pi
∂xi

.

In general given a function J it is not easy to verify (5) for knowing if it
is a Jacobi multiplier. However we have the following result of Whittaker
[16], which plays a main role for detecting Jacobi multipliers.

Proposition 5. Let J = J(x) be a non–negative C1 function non–identically
zero on any open subset of Rn. Then J is a Jacobi multiplier of the differ-
ential system (1) if and only if the divergence of the differential system

ẋi = J(x)Pi(x), for i = 1, . . . , n,

is zero.

From Theorem 4 and Proposition 5 it follows immediately the following
result.

Corollary 6. Consider the differential system (1) in Rn, and assume that it
has zero divergence and n− 2 first integrals functionally independent. Then
the system is completely integrable.

Proof of Theorem 1. It is immediate to verify that the Euler equations (2)
in R6 have zero divergence, because every Pi does not depend on xi. In the
Manakov or product cases the Euler equations have 4 = 6− 2 first integrals
functionally independent. So in this two cases the Euler equations satisfy
the assumptions of Corollary 6. Therefore in the Manakov or product cases
the Euler equations are completely integrable. �
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3. Proof of Theorem 2

We denote by Z+ the set of non–negative integers. The following result,
due to Zhang [20], will be used in the proof of Theorem 2.

Theorem 7. For an analytic vector field (1) in (Rn, 0) with P(0) = 0, let
λ1, . . . , λn be the eigenvalues of DP(0). Set

G =

{
(k1, . . . , kn) ∈ (Z+)n :

n∑
i=1

kiλi = 0,

n∑
i=1

ki > 0

}
.

Assume that system (1) has r < n functionally independent local analytic
first integrals Φ1(x), . . . ,Φr(x) at (Rn, 0). If the Z–linear space generated by
G has dimension r, then any nontrivial analytic first integral of system (1)
is an analytic function of Φ1(x), . . . ,Φr(x).

We call each element (k1, . . . , kn) of G a resonant lattice of the eigenvalues
λ1, . . . , λn. Theorem 7 implies that the number of functionally independent
local analytic first integrals of system (1) at the singularity 0 does not exceed
the number of linearly independent resonant lattices of λ1, . . . , λn.

Direct calculations show that the Euler equations have the following nine
planes of singularities

(x1, 0, 0, x4, 0, 0) ,

(0, x2, 0, 0, x5, 0) ,

(0, 0, x3, 0, 0, x6) ,(
λ34λ46x4√
λ31λ34λ16λ46

, 0,

√
λ16λ46x6√
λ31λ34

, x4, 0, x6

)
,(

− λ34λ46x4√
λ31λ34λ16λ46

, 0,−
√
λ16λ46x6√
λ31λ34

, x4, 0, x6

)
,(

λ24λ45x4√
λ21λ24λ15λ45

,

√
λ15λ45x5√
λ21λ24

, 0, x4, x5, 0

)
,(

− λ24λ45x4√
λ21λ24λ15λ45

,−
√
λ15λ45x5√
λ21λ24

, 0, x4, x5, 0

)
,(

0,
λ35λ56x5√
λ32λ35λ26λ56

,

√
λ26λ56x6√
λ32λ35

, 0, x5, x6

)
,(

0,− λ35λ56x5√
λ32λ35λ26λ56

,−
√
λ26λ56x6√
λ32λ35

, 0, x5, x6

)
.

Of course the existence of these last six planes of singularities depends on
the values of the parameters λi’s.
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At the singularities S1 = (x1, 0, 0, x4, 0, 0), the 6–tuple of eigenvalues µ =
(µ1, . . . , µ6) of the linear part of the Euler equations are

(6)

0, 0, −

√
a1 −

√
b1

2
,

√
a1 −

√
b1

2
, −

√
a1 +

√
b1

2
,

√
a1 +

√
b1

2

 ,

where

a1 = − (λ12λ13 + λ15λ16)x2
1 + (λ24λ46 + λ34λ45)x2

4,

b1 = −4∆1 + a2
1,

with

∆1 =
(
λ12λ15x

2
1 + λ24λ45x

2
4

) (
λ13λ16x

2
1 + λ34λ46x

2
4

)
.

From Theorem 7 we know that the number of functionally independent
analytic first integrals of the Euler equations in a neighborhood of the sin-
gularities S1 is no more than the number of linearly independent elements
of the set

G1 =

{
(k1, . . . , k6) ∈ Z6

+;

6∑
i=1

kiµi = 0,

6∑
i=1

ki ≥ 1

}
,

Consequently the number of the functionally independent polynomial first
integrals of the Euler equations are no more than the number of the linearly
independent elements of G1.

According to the eigenvalues (6) the resonant lattices satisfy

(7)

√
a1 −

√
b1 (k3 − k4) +

√
a1 +

√
b1 (k5 − k6) = 0.

This last equation has the following linearly independent non–negative so-
lutions (k1, . . . , k6):

(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0) and (0, 0, 0, 0, 1, 1).

In order that equation (7) has other linearly independent non–negative in-
teger solutions different from the above list, we must have

(i) either (a1 −
√
b1)(a1 +

√
b1) = 0;

(ii) or (a1 −
√
b1)(a1 +

√
b1) 6= 0 and

√
a1 −

√
b1/
√
a1 +

√
b1 a rational

number. Then ∆1 6= 0 and a1 6= 0 (otherwise
√
−
√
b1/
√√

b1 cannot
be a rational number). Set√
a1 −

√
b1/

√
a1 +

√
b1 = m/n, m, n ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

∆1

a2
1

=
m2

(m+ n)2
,

where we have used the fact that b1 = a2
1 − 4∆1.

In the case (i) we have the twelve independent conditions:



8 J. LLIBRE, J. YU, X. ZHANG

• λ1 = λ2 and λ4 = λ5;
• λ1 = λ5 and λ2 = λ4;
• λ1 = λ3 and λ4 = λ6;
• λ1 = λ6 and λ3 = λ4;
• λ1 = λ2 = λ3 = λ5 = λ6;
• λ2 = λ3 = λ4 = λ5 = λ6;
• λ1 = λ2 = λ4;
• λ1 = λ4 = λ5;
• λ1 = λ3 = λ4;
• λ1 = λ4 = λ6;
• λ1 = λ3 = λ6 and λ2 = λ4 = λ5;
• λ1 = λ2 = λ5 and λ3 = λ4 = λ6.

Here we have used the fact that we consider all the planes of singularities S1

under any given condition on the parameters of Euler equations (2). Some
calculations show that the first six ones are inside the Manakov condition,
i.e. under such condition we have M = 0. Under the last six conditions we
have

• M |λ1=λ2=λ4
= λ13λ15λ16,

• M |λ1=λ4=λ5
= λ12λ13λ16,

• M |λ1=λ3=λ4
= λ21λ15λ16,

• M |λ1=λ4=λ6
= λ21λ13λ15,

• M |λ1=λ3=λ6, λ2=λ4=λ5
= λ3

12,

• M |λ1=λ2=λ5, λ3=λ4=λ6
= λ3

12,

respectively.

Lemma 8. Under the conditions either λ1 = λ2 = λ4, or λ1 = λ4 = λ5,
or λ1 = λ3 = λ4, or λ1 = λ4 = λ6, or λ1 = λ3 = λ6 and λ2 = λ4 = λ5,
or λ1 = λ2 = λ5 and λ3 = λ4 = λ6, the Euler equations either satisfy the
Manakov condition or have some singularities whose eigenvalues do not have
a fifth linearly independent resonant lattice.

Proof. We shall show that some of the planar singularities (0, x2, 0, 0, x5, 0)
and (0, 0, x3, 0, 0, x6) are suitable for the choice of the lemma in the first

four cases. The singularities

(
0,

λ35λ56x5√
λ32λ35λ26λ56

,

√
λ26λ56x6√
λ32λ35

, 0, x5, x6

)
are

suitable for the choice of the lemma in the last two cases.

At the singularities S2 = (0, x2, 0, 0, x5, 0), the 6–tuple of eigenvalues of
the linear part of the Euler equations are

(8)

0, 0, −

√
a2 −

√
b2

2
,

√
a2 −

√
b2

2
, −

√
a2 +

√
b2

2
,

√
a2 +

√
b2

2

 ,
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where

a2 = (λ12λ23 − λ24λ26)x2
2 + (λ15λ56 − λ35λ45)x2

5,

b2 = 4∆2 + a2
2,

with

∆2 =
(
λ12λ24x

2
2 + λ15λ45x

2
5

) (
λ23λ26x

2
2 + λ35λ56x

2
5

)
.

Direct calculations show that

∆2|λ1=λ2=λ4
= λ2

15x
2
5

(
λ13λ16x

2
2 + λ35λ56x

2
5

)
,

∆2|λ1=λ4=λ5
= λ2

12x
2
2

(
λ32λ26x

2
2 + λ13λ16x

2
5

)
.

Hence under one of the conditions λ1 = λ2 = λ4 or λ1 = λ4 = λ5 we are
either in the Manakov condition or a2

2 − b2 6= 0, i.e. ∆2 6= 0. In the latter,
working in a similar way as for the singularities S1 for studying if there
is a fifth linearly independent resonant lattice at S2, we need to check if√
a2 −

√
b2/
√
a2 +

√
b2 is a rational number.

For S2 we are now in the conditions λ1 = λ2 = λ4 and λ13λ15λ16 6= 0. Set√
a2 −

√
b2/

√
a2 +

√
b2 = m2/n2, m2, n2 ∈ Z \ {0} coprime.

This last equation can be written as

(9)
∆2

a2
2

= − m2
2

(n2 +m2)2
.

Clearly we have a2 6= 0, otherwise
√
a2 −

√
b2/
√
a2 +

√
b2 is not a rational

number. Since

∆2

a2
2

=
λ13λ16x

2
2

(λ35 − λ56)2x2
5

+
λ35λ56

(λ35 − λ56)2
,

this shows that there always exist infinitely many singularities S2 which
cannot satisfy condition (9). At these singularities S2 the eigenvalues do
not have a fifth linearly independent resonant lattice.

In the conditions λ1 = λ4 = λ5 and λ12λ13λ16 6= 0, we also set√
a2 −

√
b2/

√
a2 +

√
b2 = m2/n2.

This can be written as (9). Since a2 6= 0 and

∆2

a2
2

=
λ13λ16x

2
5

(λ23 + λ36)2x2
2

+
λ32λ26

(λ23 + λ26)2
,

this also shows that there always exist infinitely many singularities S2 which
cannot satisfy condition (9). At these singularities S2 the eigenvalues do not
have a fifth linearly independent resonant lattice.
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At the singularities S3 = (0, 0, x3, 0, 0, x6), the 6–tuple of eigenvalues of
the linear part of the Euler equations are

(10)

0, 0, −

√
a3 −

√
b3

2
,

√
a3 −

√
b3

2
, −

√
a3 +

√
b3

2
,

√
a3 +

√
b3

2

 ,

where

a3 = − (λ13λ23 + λ34λ35)x2
3 − (λ16λ56 + λ26λ46)x2

6,

b3 = −4∆3 + a2
3,

with

∆3 =
(
λ13λ34x

2
3 + λ16λ46x

2
6

) (
λ23λ35x

2
3 + λ26λ56x

2
6

)
.

Direct calculations show that

∆3|λ1=λ3=λ4
= λ2

16x
2
6

(
λ21λ15x

2
3 + λ26λ56x

2
6

)
,

∆3|λ1=λ4=λ6
= λ2

13x
2
3

(
λ32λ35x

2
3 + λ21λ15x

2
6

)
.

Hence under one of the conditions λ1 = λ3 = λ4 or λ1 = λ4 = λ6 we are
either in the Manakov condition or a2

3 − b3 6= 0, i.e. ∆3 6= 0. In the latter,
working in a similar way as for the singularities S1 for studying if there
is a fifth linearly independent resonant lattice at S3, we need to check if√
a3 −

√
b3/
√
a3 +

√
b3 is a rational number.

For S3 we are now in the conditions respectively λ1 = λ3 = λ4 and
λ12λ15λ16 6= 0, or λ1 = λ4 = λ6 and λ12λ13λ15 6= 0. Set√

a3 −
√
b3/

√
a3 +

√
b3 = m3/n3, m3, n3 ∈ Z \ {0} coprime.

This last equation can be written as

(11)
∆3

a2
3

=
m2

3

(n3 +m3)2
.

Since a3 6= 0 and under the above two conditions we have respectively

∆3

a2
3

=
λ21λ15x

2
3

(λ26 + λ56)2x2
6

+
λ26λ56

(λ26 + λ56)2
,

or
∆3

a2
3

=
λ21λ15x

2
6

(λ23 − λ35)2x2
3

+
λ32λ35

(λ23 − λ35)2
.

Hence there are infinitely many singularities S3 at which the eigenvalues do
not have a fifth linearly independent resonant lattice.

We can check that ∆2 and ∆3 are zero under the conditions λ1 = λ3 = λ6

and λ2 = λ4 = λ5, or λ1 = λ2 = λ5 and λ3 = λ4 = λ6. So in these two cases
the singularities S2 and S3 are not suitable for the lemma. We consider the
singularities

S4 =

(
0,

λ35λ56x5√
λ32λ35λ26λ56

,

√
λ26λ56x6√
λ32λ35

, 0, x5, x6

)
.
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Under any one of the conditions λ1 = λ3 = λ6 and λ2 = λ4 = λ5, and
λ1 = λ2 = λ5 and λ3 = λ4 = λ6, the expression of S4 can be simplified to
S2 = (0,−x5, x6, 0, x5, x6). The 6–tuple of eigenvalues of the linear part of
the Euler equations at these singularities S4 are

(12)

0, 0, −

√
a4 −

√
b4

2
,

√
a4 −

√
b4

2
, −

√
a4 +

√
b4

2
,

√
a4 +

√
b4

2

 ,

where

a4 =

{
−2(λ1 − λ2)2

(
x2

5 + x2
6

)
, if λ1 = λ3 = λ6, λ2 = λ4 = λ5,

−2(λ1 − λ3)2
(
x2

5 + x2
6

)
, if λ1 = λ2 = λ5, λ3 = λ4 = λ6,

b4 = 4∆4 + a2
4,

with

∆4 =

{
−8(λ1 − λ2)4x2

5x
2
6, if λ1 = λ3 = λ6, λ2 = λ4 = λ5,

−8(λ1 − λ3)4x2
5x

2
6, if λ1 = λ2 = λ5, λ3 = λ4 = λ6.

For the Euler system to be not trivial under the two conditions mentioned
above, we must have λ1 6= λ2 or λ1 6= λ3. Under these conditions we have
∆4 6= 0, i.e. a2

4 − b4 6= 0. In order that there is a fifth linearly independent

resonant lattice at S4, the ratio
√
a4 −

√
b4/
√
a4 +

√
b4 should be a rational

number. That is,

(13)
∆4

a2
4

= − m2
4

(n4 +m4)2
,

for some m4, n4 ∈ N. But it follows from the expressions of a4 and ∆4 that
there are infinitely many singularities S4 at which (13) cannot hold. So at
these singularities S4 the eigenvalues do not have a fifth linearly independent
resonant lattice. This completes the proof of the lemma. �

From Lemma 8 and Theorem 7 we have proved that in the case (i) the
Euler equations either satisfy the Manakov condition or have at most four
functionally independent polynomial first integrals.

Next we consider the case (ii). In order that at all the planar singularities
S1, ∆1/a

2
1 has the form m2/(n+m)2 with m,n ∈ Z\{0} coprime, it follows

from the expressions of ∆1 and a1 that ∆1 should be a square of λ12λ15x
2
1 +

λ24λ45x
2
4 or of λ13λ16x

2
1 + λ34λ46x

2
4, without loss of generality we set

λ13λ16x
2
1 + λ34λ46x

2
4 = L2

(
λ12λ15x

2
1 + λ24λ45x

2
4

)
,

and that a1/
(
λ12λ15x

2
1 + λ24λ45x

2
4

)
is a constant. Set

a1 = K
(
λ12λ15x

2
1 + λ24λ45x

2
4

)
.
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Then we must have

λ13λ16 = λ12λ15L
2,(14)

λ34λ46 = λ24λ45L
2,(15)

−λ12λ13 − λ15λ16 = λ12λ15K,(16)

λ24λ46 + λ34λ45 = λ24λ45K,(17)

where L/K = m/(n+m).

If λ5 = λ6, equations (14) and (15) have two solutions λ2 = (L2λ1 +
λ31)/L2 and λ6 = λ4, and λ2 = (L2λ4 +λ34)/L2 and λ6 = λ1. We can check
easily that these conditions are inside the Manakov case. This shows that
under the condition λ5 = λ6 the Euler equations are either inside the Man-
akov condition or have at most four functionally independent polynomial
first integrals.

If λ5 6= λ6, equations (14) and (15) has a unique solution

λ2 = −λ16λ46 − L2(λ1λ46 − λ6λ45)

L2λ56
,

λ3 = −λ1λ45 − λ5λ46 − L2λ15λ45

λ56
.

We can check that this condition is also inside the Manakov one. Hence in
the case (ii) we have proved that the Euler equations are either inside the
Manakov condition or have at most four functionally independent polyno-
mial first integrals. This completes the proof of Theorem 2.

4. Proof of Theorem 3

First we recall some basic results on the quasi–homogeneous polynomial
differential systems that we shall need later on in the proof of Theorem 3.

We say that the polynomial differential system (1) is quasi–homogeneous
if there exist s = (s1, · · · , sn) ∈ Zn and d ∈ Z such that for arbitrary
α ∈ R+ = {a ∈ R, a > 0},

Pi(α
s1x1, · · · , αsnxn) = αsi−1+dPi(x1, · · · , xn),

for i = 1, . . . , n. We call s = (s1, · · · , sn) the weight exponent of system
(1), and d the weight degree with respect to the weight exponent s. In the
particular case that s = (1, · · · , 1) system (1) is the classical homogeneous
polynomial differential system of degree d.

We remark that if system (1) is quasi–homogeneous with weight exponent
s and weight degree d > 1, then the system is invariant under the change of
variables xi → αwixi, t→ α−1t, where wi = si/(d− 1).

Recently the integrability of quasi–homogeneous polynomial differential
systems have been investigated by several authors. Probably the best results
have been provided by Yoshida [17, 18, 19], Furta [4] and Goriely [6, 7], see
also Gonzalez–Gascon [5], Tsygvintsev [15] and Llibre and Zhang [8].
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Given an analytic function F we can split it in the form F =
∑

i Fi, where
Fi is a quasi–homogeneous polynomial of weight degree i with respect to the
weight exponent s, i.e.

Fi(α
s1x1, . . . , α

snxn) = αiFi(x1, . . . , xn) for all α ∈ R+.

The following result is well known, see for instance Proposition 1 of [8].

Proposition 9. Let F be an analytic function and let F =
∑

i Fi be its
decomposition into weight–homogeneous polynomials of weight degree i with
respect to the weight exponent s. Then F is an analytic first integral of the
quasi–homogeneous polynomial differential system (1) with weight exponent
s if and only if each weight–homogeneous part Fi is a first integral of system
(1) for all i.

Suppose that system (1) is a quasi–homogeneous polynomial differential
system of weight degree d with respect to the weight exponent s. Then we
define w = s/(d − 1). The interest for the quasi–homogeneous polynomial
differential systems is based in the existence of the particular solutions of
the form

(x1(t), . . . , xn(t)) =
(
c1t

−w1 , . . . , cnt
−wn

)
,

where the coefficients c = (c1, . . . , cn) ∈ Cn\{0} are given by the polynomial
system of equations

(18) Pi(c1, . . . , cn) + wici = 0 for i = 1, . . . , n.

For a given (w1, . . . , wn) there may exist different c’s, called the balances.

For each balance c we introduce a matrix

(19) K(c) = DP(c) + diag(w1, . . . , wn),

where as usual DP(c) denotes the differential of P evaluated at c, and
diag(w1, . . . , wn) denotes the matrix whose diagonal is equal to (w1, . . . , wn)
and zeros in the rest.

The eigenvalues of K(c) are called the Kowalevsky exponents of the bal-
ance c. Sophia Kowalevskaya was the first to introduce the matrix K to
compute the Laurent series solutions of the rigid body motion. It can be
shown that there always exists a Kowalevsky exponent equal to −1 related
to the arbitrariness of the origin of the parametrization of the solution by the
time. The eigenvector associated to the eigenvalue −1 is (w1c1, . . . , wncn),
for more details see [17] or [4].

Probably the best results in order to know if a weighted homogeneous
polynomial of weight degree d with respect to the weight exponent s is a
first integral of a quasi–homogeneous polynomial differential system (1) with
weight degree m with respect to the weight exponent s is essentially due to
Yoshida [17], and are the following two theorems.

Theorem 10. Let H(x1, . . . , xn) be a weighted homogeneous polynomial
first integral of weight degree m with respect to the weight exponent s of the
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quasi–homogeneous polynomial differential system (1) with weight degree d
with respect to the weight exponent s. Suppose the gradient of H evaluated at
a balance c is finite and not identically zero. Then m/(d−1) is a Kowalevsky
exponent of the balance c.

Theorem 11. Let r be a positive integer such that 1 < r < n, and let
Hk(x1, . . . , xn) for k = 1, . . . , r be weighted homogeneous polynomial first
integrals of weight degree m with respect to the weight exponent s of the
quasi–homogeneous polynomial differential system (1) with weight degree d
with respect to the weight exponent s. Suppose that the gradients of Hk

for k = 1, . . . , r evaluated at a balance c are finite, not identically zero
and linearly independent. Then m/(d− 1) is a Kowalevsky exponent of the
balance c with multiplicity at least r.

As we mentioned after Theorem 3 that in the Manakov case the gradient
of the first integral H4 is linearly dependent on the gradients of H1, H2

and H3 at each of the balances Cij for i, j ∈ {1, . . . , 4}. So H4 does not
satisfy the condition of Theorem 11. In fact, direct computations show
that the Kowalevsky exponents at all the 16 balances are (−1, 2, 2, 2, 1, 0) in
the Manakov case. This Manakov case shows that the linearly independent
condition in Theorem 11 cannot be erased.

Proof of Theorem 3. For the Euler equations we take the weight exponent
s = (1, 1, 1, 1, 1, 1). Then the Euler equations have a weight homogenous
polynomial differential system of weight degree 2 with the exponent s.

If λ12λ13λ15λ16λ23λ24λ26λ34λ35λ45λ46λ56 6= 0, with the help of the alge-
braic manipulator Mathematica we compute the balances C = (c1, . . . , c6)
of the Euler equations and we get the following 16 balances:

(20)

C1 =

(
δλ56√
λ15λ56

γ√
λ61λ56

, 0, 0, 0,
γ√

λ15λ56
,

δ√
λ61λ56

)
,

C2 =

(
0, 0,

γ√
λ53λ34

,
γλ53√
λ53λ34

δ√
λ53λ45

,
δ√

λ53λ45
, 0

)
,

C3 =

(
0,

γ√
λ62λ24

, 0,
γλ26√
λ62λ24

δ√
λ62λ46

, 0,
δ√

λ62λ46

)
,

C4 =

(
δλ23√
λ23λ12

γ√
λ31λ23

,
δ√

λ23λ12
,

γ√
λ31λ23

, 0, 0, 0

)
,

where δ, γ ∈ {1,−1}. We mention that each Ci contains four balances for
(δ, γ) = (1, 1), (1,−1), (−1, 1), (−1,−1), denoted by Ci1, Ci2, Ci3, Ci4 for
i = 1, 2, 3, 4, respectively. Also these balances are complex numbers.

Direct calculations using Mathematica show that the Kowalevsky expo-
nents associated to the four balances C1 are equal and given by(

−1, 2, 2, 2,
1−
√
A1

2
,
1 +
√
A1

2

)
,



ON THE INTEGRABILITY OF THE EULER EQUATIONS 15

with

A1 =
K1λ56 + 4(λ1λ2 + λ3λ6)λ45 − 4(λ1λ3 + λ2λ5)λ46

λ15λ16λ56
,

where K1 = (λ1λ15 + λ6λ51 + 4(λ1λ4 + λ2λ3)). The Kowalevsky exponents
associated to C2 are equal and given by(

−1, 2, 2, 2,
1−
√
A2

2
,
1 +
√
A2

2

)
,

with

A2 =
K2λ45 + 4(λ1λ6 + λ2λ5)λ34 − 4(λ1λ4 + λ2λ6)λ35

λ34λ35λ45
,

where K2 = (λ3λ34 + λ5λ43 + 4(λ1λ2 + λ3λ6)). The Kowalevsky exponents
associated to C3 are equal and given by(

−1, 2, 2, 2,
1−
√
A3

2
,
1 +
√
A3

2

)
,

with

A3 =
K3λ46 − 4(λ1λ2 + λ3λ6)λ45 − 4(λ1λ4 + λ2λ3)λ56

λ24λ26λ46
,

where K3 = (λ2λ24 + λ6λ42 + 4(λ1λ3 + λ2λ5)). The Kowalevsky exponents
associated to C4 are equal and given by(

−1, 2, 2, 2,
1−
√
A4

2
,
1 +
√
A4

2

)
,

with

A4 =
K4λ23 − 4(λ1λ5 + λ3λ6)λ24 + 4(λ1λ6 + λ2λ5)λ34

λ12λ13λ23
,

where K4 = (λ1λ12 + λ3λ21 + 4(λ1λ4 + λ5λ6)). Furthermore, we can prove
that

Ak = 1 +
4M

Lk
, for k = 1, 2, 3, 4,

where M was defined in (3) for the Manakov condition and the Lk’s are
defined in the statement of Theorem 3.

Assume that the Euler equations have a polynomial first integral H of
degree m which is functionally independent of the first integrals H1, H2 and
H3.

Suppose that m > 2. If the gradient of H at some balance Cij , i, j ∈
{1, 2, 3, 4}, is not identically zero, then we get from Theorem 10 that the
degree m of H must be equal to the Kowalevsky exponent

(
1±
√
Ak
)
/2.

This forces that Ak = (2m−1)2, and consequently we have M/Lk = m2−m.
This proves statement (a).

Suppose now that m = 2. If the gradient of H at some balance Cij ,
i, j ∈ {1, 2, 3, 4}, is linearly independent of the gradients of H1, H2 and H3,
then we get from Theorem 11 that the Kowalevsky exponent 2 must be of
multiplicity 4. Hence we must have

(
1 +
√
Ak
)
/2 = 2. This forces that
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M/Lk = 2. This proves statement (b). We complete the proof of Theorem
3. �
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