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BICENTRIC QUADRILATERAL CENTRAL

CONFIGURATIONS

JAUME LLIBRE1 AND PENGFEI YUAN2

Abstract. A bicentric quadrilateral is a tangential cyclic quadri-
lateral. In a tangential quadrilateral the four sides are tangents to
an inscribed circle, and in a cyclic quadrilateral the four vertices lie
on a circumscribed circle. In this paper we classify all planar cen-
tral configurations of the 4-body problem, where the four bodies
are at the vertices of a bicentric quadrilateral.

1. Introduction and statement of the results

The well-known Newtonian n-body problem concerns with the mo-
tion of n mass points with positive mass mi moving under their mutual
attraction in R

d in accordance with Newton’s law of gravitation.

The equations of the motion of the n-body problem are :

ẍi = −
n

∑

j=1,j 6=i

mj(xi − xj)

r3ij
, 1 ≤ i ≤ n,

where we have taken the unit of time in such a way that the Newtonian
gravitational constant be one, and xi ∈ R

d(i = 1, . . . , n) denotes the
position vector of the i-body, rij = |xi − xj| is the Euclidean distance
between the i-body and the j-body.

Alternatively the equations of the motion can be written

miẍi = ∇iU(x), 1 ≤ i ≤ n,

where x = (x1, . . . , xn), and

U(x) =
∑

1≤i<j≤n

mimj

|xi − xj |
,

is the potential of the system.
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The solutions of the 2-body problem (also called the Kepler problem)
has been completely solved. Unfortunately the solutions for the n-body
(n ≥ 3) is still an open problem.

For the Newtonian n-body problem the simplest possible motions
are such that the configuration is constant up to rotations and scaling.
Only some special configurations of particles are allowed in such mo-
tions called homographic solutions. Wintner [47] called them central
configurations.

More precisely, let

M = m1 + · · ·+mn, c =
m1x1 + · · ·+mnxn

M
,

be the total mass and the center of masses of the n bodies, respectively.

A configuration x is called a central configuration if the acceleration
vectors of the n bodies are proportional to their positions with respect
to the center of masses with the same constant of proportionality, i.e.

n
∑

j=1,j 6=i

mj(xj − xi)

r3ij
= λ(xi − c), 1 ≤ i ≤ n, (1)

where λ is the constant of proportionality.

Equations (1) are invariant under rotations, dilatations and trans-
lations on the plane. Two central configurations are related if we can
pass from one to the other doing some of the mentioned transforma-
tions. This relation is of equivalence. When we talk about the number
of central configurations we will talk about the number of classes of
equivalence of central configurations.

Central configurations play an important role in Celestial Mechanics,
for more details see([18, 23, 34, 36, 42, 45, 47].

There is an extensive literature on the study of central configurations,
see Euler [20], Lagrange [27], Albouy and Chenciner [3], Albouy and Fu
[4], Albouy and Kaloshin [6], Hampton and Moeckel [25], Llibre [30],
Moulton [37] Palmore [38], Schmidt [43], Smale [45], Xia [48, 49], Xie
[50], . . .

In this paper we are interested in the planar 4-body problem. For the
4-body problem the exact number and classification of central configu-
rations remain open, only some partial results are obtained. There is a
good numerical study on the central configurations of the 4-body pro-
lem, see Simó [44]. The finiteness for the general 4-body problem was
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settled by Hampton and Moeckel using an assisted proof by computer
[25], and Albouy and Kaloshin [6] provided an analytical proof.

For m1 = m2 = m3 = m4 Llibre found all the planar central configu-
rations assuming the central configurations have an axis of symmetry,
see [29]. Later on Albouy proved the existence of such symmetry and
provide a more analytical proof.

For the case of three equal masses Bernat at al. classified the non-
collinear kite central configurations, see [13], also see [28].

A quadrilateral is convex if none of the vertices is located in the
interior of the triangle formed by the other three vertices, otherwise it
is concave.

Form1 = m2 andm3 = m4, Long and Sun [9] proved some symmetry
of the central configurations. Perez-Chavela and Santoprete [40] proved
that there is a unique convex non-collinear central configuration of
planar 4-body problem when two equal masses are located at opposite
vertices of a quadrilateral and, at most, only one of the remaining
masses is larger than the equal masses.

When one of the 4 masses is sufficiently small, Pedersen [39], Barros
and Leandro [11, 12] found the classes of central configurations of the
4-body, see also Gannaway [22] and Arenstorf [10].

For m1 = m2 6= m3 = m4 Álvarez and Llibre [7] characterized the
convex and concave central configurations with an axis of symmetry.

Corbera and Llibre [14] gave a complete description of the families of
central configurations with two pairs of equal masses when two equal
masses are sufficiently small.

Recently Álvarez and Llibre [7] classified Hjelmslev quadrilateral cen-
tral configurations. A Hjelmslev quadrilateral is a quadrilateral with
two right angles at opposite vertices.

A bicentric quadrilateral is a tangential cyclic quadrilateral. In a
tangential quadrilateral the four sides are tangents to an inscribed cir-
cle, and in a cyclic quadrilateral the four vertices lie on a circumscribed
circle, see Figure 1.

A kite quadrilateral is a quadrilateral that two pairs of adjacent sides
are of equal length.

In [15] Cors and Robert studied the case when four masses are located
at the vertices of a cyclic quadrilateral, see also [9].
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m1
m2

m4 m3

Figure 1. A bicentric quadrilateral.

In this paper we want to classify the bicentric quadrilateral cen-
tral configurations, i.e. we will improve the classification of the cyclic
quadrilateral central configurations provided by Cors and Robert show-
ing which of these central configurations are also tangential quadrilat-
erals. We characterize all central configurations of the 4-body problem
with the four bodies at the vertices of a bicentric quadrilateral.

Theorem 1. Without loss of generality we can take positive masses

for the 4-body problem with m1 = 1 and r12 = 1, then

(a) we have a bicentric quadrilateral central configurations with pos-

itive masses satisfying m1 = m3 = 1, r12 = r23 = 1, r14 =

r34, r24 =
√

1 + r214, r13 = 2r14/
√

1 + r214, and r14 ∈ (
√
3

3
, 1],

(b) the shape of a bicentric quadrilateral central configurations is a

kite quadrilateral with r14 perpendicular to r12, and r23 perpen-

dicular to r34, see Figure 2.

Theorem 1 is proved in Section 3.

We note that from statement (b) of Theorem 1 any bicentric quadri-
lateral central configurations is a kite Hjelmslev quadrilateral central
configuration.

2. Preliminaries

Let x = (x1, x2, x3, x4) ∈ (R2)4. We associated with x the matrix:

X =





1 · · · 1
x1 · · · x4

0 · · · 0



 .
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m1

m2

m3

m4

Figure 2. The shape of a bicentric quadrilateral central
configuration is also a kite Hjelmslev quadrilateral.

Xk denotes the matrix obtained deleting from the matrix X its k-th
column and its last row. Then let Dk = (−1)k+1 det (Xk) for k =
1, . . . , 4.

Dk is twice the signed area of the triangle whose vertices contain all
bodies except the k-th body, and from the quadrilateral of Figure 1 we
have

D1, D3 > 0, D2, D4 < 0, D1 +D2 +D3 +D4 = 0.

The equations for the central configurations (1) of the 4-body problem
were written by Dziobek [16] (see also equations (8) and (16) of Moeckel
[34] or [22]) as the following 12 equations with 12 unknowns.

1

r3ij
= c1 + c2

DiDj

mimj

, (2)

ti − tj = 0,

for 1 ≤ i < j ≤ 4, where

ti =

4
∑

j=1,j 6=i

Djr
2

ij .

The unknowns of equations (3) are the mutual distances rij, the vari-
ables Di, and the constants ck (k = 1, 2).

The first six Dziobek’s equation (2) are

m1m2(r
−3

12 − c1) = c2D1D2, m3m4(r
−3

34 − c1) = c2D3D4,

m1m3(r
−3

13 − c1) = c2D1D3, m2m4(r
−3

24 − c1) = c2D2D4, (3)

m1m4(r
−3

14 − c1) = c2D1D4, m2m3(r
−3

23 − c1) = c2D2D3.
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Multiplying the two equations which appear in each of the three rows
of equations (3) we obtain the same expression c22D1D2D3D4, which
provide the Dziobek relation:

(r−3

12 − c1)(r
−3

34 − c1) = (r−3

13 − c1)(r
−3

24 − c1) = (r−3

14 − c1)(r
−3

23 − c1). (4)

We can solve c1 from the Dziobek relation (4) and we have

c1 =
r−3

12 r
−3

34 − r−3

13 r
−3

24

r−3

12 + r−3

34 − r−3

13 − r−3

24

=
r−3

13 r
−3

24 − r−3

14 r
−3

23

r−3

13 + r−3

24 − r−3

14 − r−3

23

(5)

=
r−3

14 r
−3

23 − r−3

12 r
−3

34

r−3

14 + r−3

23 − r−3

12 − r−3

34

.

Defining

s1 = r−3

12 + r−3

34 , p1 = r−3

12 r
−3

34 ,

s2 = r−3

13 + r−3

24 , p2 = r−3

13 r
−3

24 ,

s3 = r−3

14 + r−3

23 , p3 = r−3

14 r
−3

23 ,

equation (5) become

c1 =
p1 − p2
s1 − s2

=
p2 − p3
s2 − s3

=
p3 − p1
s3 − s1

, (6)

which imply that the points (s1, p1), (s2, p2), (s3, p3) of the plane are
on the same straight line with slope c1, i.e.

∣

∣

∣

∣

∣

∣

1 1 1
s1 s2 s3
p1 p2 p3

∣

∣

∣

∣

∣

∣

= 0.

So we can write Dziobek equation as

D = (r313−r312)(r
3

23−r334)(r
3

24−r314)−(r312−r314)(r
3

24−r334)(r
3

13−r323) = 0.
(7)

Lemma 2. If the four masses are at the vertices of a bicentric quadri-

lateral as in Figure 1, then

r23 = 1− r14 + r34,

r34 =
r214 + r13r24 − r14

1 + r14
. (8)

Proof. For a bicentric quadrilateral as it is shown in Figure 1 the four
sides are tangents to an inscribed circle, and the four vertices lie on a
circumscribed circle.
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According to the Pitot theorem [26], we have

r12 + r34 = r23 + r14, (9)

and by the Ptolemy’s theorem [17], we have

r13r24 = r12r34 + r23r14. (10)

From (9) we can get

r23 = r12 + r34 − r14, (11)

then substitute (11) into (10), we obtain

r34 =
r214 + r13r24 − r14

1 + r14
. (12)

�

3. Proof of Theorem 1

Since we study classes of central configurations, without loss of gen-
erality, we can assume m1 = 1, r12 = 1, and that r12 is the longest side
of the quadrilateral.

From (3) we can obtain the masses expressed in terms of the distances
rij and the areas Dk, i.e.

m2 =
D2r

3
23r

3
24(r

3
13 − r314)

D1r313r
3
14(r

3
23 − r324)

,

m3 =
D3r

3
23r

3
34(1− r314)

D1r314(r
3
23 − r334)

, (13)

m4 =
D4r

3
24r

3
34(1− r313)

D1r313(r
3
24 − r334)

.

Substituting these masses into the first six Dziobek equations (3),
and taking only the numerators of these six equations because the
denominators do not vanish, we have

e1 = D2(c2D
3
1r

3
12r

3
13r

2
14(r

3
24 − r323)− r323r

3
24(c1r

3
12 − 1)(r313 − r314)),

e2 = D3(c2D
2
1r

3
12r

3
13r

3
14(r

3
34 − r323)− r323r

3
34(c1r

3
13 − 1)(r312 − r314)),

e3 = D2D3(r
3
23r

3
24r

3
34(c1r

3
23 − 1)(r312r

3
14)(r

3
14 − r313)−

c2D
2
1r

3
12r

3
13r

6
14(r

3
23 − r324)(r

3
23 − r334)),

e4 = D4(c2D
2
1r

3
12r

3
13r

3
14(r

3
34)− r324 − r324r

3
34(c1r

3
14 − 1)(r312 − r313)),

(14)
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e5 = D2D4(−r323r
3
24r

3
34(c1r

3
24 − 1)(r312 − r313)(r

3
13 − r314)−

c2D
2
1r

3
12r

6
13r

3
14(r

3
23 − r324)(r

3
24 − r334)),

e6 = D3D4(c2D
2
1r

6
12r

3
13r

3
14(r

3
23 − r334)(r

3
34 − r324)−

r323r
3
24r

3
34(c1r

3
34 − 1)(r312 − r313)(r

3
12 − r314)).

We remark that the last six equations of (2) are identically zero when
we substitute the coordinates of the four bodies of Figure 1.

Notice that Di(i = 1, 2, 3, 4) is non-zero, so we can eliminate the
D′

i s which appear as a factor in equation (14). First, we solve the first
two equations with respect to c1 and c2, and then we substitute c1 and
c2 in the last four equations of (14). We obtain

e3 =
D

d
r623r

3

24r
3

34(r
3

14 − r312)(r
3

14 − r313),

e4 = 0,

e5 =
D

d
r323r

6

24r
3

34(r
3

13 − r312)(r
3

13 − r314), (15)

e6 =
D

d
r323r

3

24r
6

34(r
3

13 − r312)(r
3

12 − r314),

where D = 0 is the Dziobek equation (7), and

d = r312(r
3

13r
3

23(r
3

24 − r334) + r314r
3

24(r
3

34 − r323)) + r313r
3

14r
3

34(r
3

23 − r324),

is the denominator which comes from the denominators of c1 and c2.

From MacMillan and Bartky [33] we know that for every convex
central configuration we have the following inequalities

r13, r24 > r12, r23, r34, r14. (16)

Since D1, D3 > 0,D2, D4 < 0, and r13 > r12, r13 > r14, the solutions
of system (15) are satisfied if and only if D = 0.

Solving the Dziobeck equation (8), after substituting r12 = 1, r23, r34
from Lemma 1, we get the solution

r13 =
2r14
r24

. (17)

Then from (8) and (17), for a bicentric quadrilateral central configura-
tion, we have

r12 = r23 = 1, r14 = r34, r13 =
2r14
r24

. (18)

So the bicentric quadrilateral central configurations are also kite quadri-
laterals and from (13) we obtain m1 = m3.
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( 1√
3
, 2√

3
)

(1,
√
2)

1

2
1

1

2

r14

r24

Figure 3.

Since the four bodies are co-circular, and a convex quadrilateral is
cyclic if and only if its opposite angles are supplementary [46], we can
deduce r14 and r12 are perpendicular, r23 and r34 are perpendicular.

Then we have

r12 = r23 = 1, r34 = r14, r13 =
2r14

√

1 + r214
r24 =

√

1 + r214. (19)

In order to find the bicentric quadrilateral central configurations with
positive masses, from (13), (16), (19) and since r12 = 1 is the longest
side of the quadrilateral the following conditions hold

1 = r23 < r24,

r34, r14 < r13, r24,

r14 ≤ 1, 1 < r13 =
2r14
r24

.

After some simplification, we obtain

r14 ≤ 1 < r24 < 2r14 < 2. (20)

Denote Λ = {(r14, r24) | r14 ≤ 1 < r24 < 2r14 < 2}.
By simple computation, the intersection point of r24 = 2r14 with

r24 =
√

1 + r214 is (1/
√
3, 2/

√
3), and the intersection point of r14 =

1 with r24 =
√

1 + r214 is (1,
√
2), then we obtain r14 ∈ [1/

√
3, 1].

Then for each r14 ∈ (1/
√
3, 1) we have a bicentric quadrilateral central

configurations with positive masses satisfying (19).
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m1

m2

m3

m4

1 1

1√
3

1√
3

Figure 4.

Now we shall study if we have or not a bicentric quadrilateral central
configuration when r14 = 1/

√
3 and r14 = 1.

Case for r14 = 1/
√
3. From (19), we obtain

r12 = r23 = 1, r14 = r34 = 1/
√
3, r13 = 1, r24 = 2/

√
3 (21)

Next we check the masses for this central configuration. From (13)
and (21), we have that m2 > 0, m3 = 1, m4 = 0, and the central
configuration in this case is the kite of Figure 4 but with m4 = 0.

Case for r14 = 1. From (19), we obtain

r12 = r23 = r34 = r14 = 1, r13 = r24 =
√
2, (22)

so the configuration is a square. Thus the bicentric quadrilateral central
configuration satisfying (22) corresponds to the square central config-
uration with m1 = m2 = m3 = m4 = 1.

In summary we have bicentric quadrilateral central configurations
with positive masses for rij satisfying

r12 = r23 = 1, r34 = r14, r24 =
√

1 + r+2
14, r13 =

2r14
√

1 + r+2
14

,

where r14 ∈ (1/
√
3 < r14 ≤ 1]. This proves the statement (a) of

Theorem 1.
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[7] Álvarez, M. and Llibre, J., Hjelmslev quadrilateral central configurations,
preprint, 2018.
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