PERIODIC ORBITS OF THE PLANAR ANISOTROPIC
MANEV PROBLEM AND OF THE PERTURBED
HYDROGEN ATOM PROBLEM

JAUME LLIBRE! AND PENGFEI YUAN?

ABSTRACT. In this paper we use the averaging theory for studying
the periodic solutions of the planar anisotropic Manev problem
and of two perturbations of the hydrogen atom problem. When a
convenient parameter is sufficiently small we prove that for every
value e € (0,1) a unique elliptic periodic solution with eccentricity
e of the Kepler problem can be continued to the mentioned three
problems.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The Manev problem is a two-body problem with a potential of the
following form
a b
Vi(r)=-+ =,
(r) r o or2
where r is the distance between the two particles and a, b are arbitrary
constants.

For a, b > 0 the problem was first considered by Newton. Manev
systems were recently reconsidered in a series of studies having as their
starting point Diacu’s research [12], see also [2],[6],[17],[20]-[23], [25]-
29],[35]-[38].

Abouelmagd et al. [1] study the periodic solutions for the planar
anisotropic Kepler problem using averaging theory. Motivated by this
work, we study the anisotropic Manev problem with a and b arbitrary
using the averaging theory.

The equations of motion are

oH , OH

1 — L —
( ) qZ 8p17 p’L aql7

fori=1,2,
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1 1 3
(2) H(q1,42,p1,p2) = 5 (01 +13) = - :
2 Q+e)g+¢ A+ +d
Here |e| > 0 denotes a small parameter and the prime denotes the
derivative with respect to the time ¢. The Hamiltonian system (1) is

defined for all (q1, g2, p1, p2) € R* except in the plane ¢, = ¢ = 0.

In this paper we study analytically the periodic solutions of the pla-
nar anisotropic Manev problem using the averaging theory, and we get
the following result.

Theorem 1. For ¢ # 0 sufficiently small a unique elliptic periodic
solution of the Kepler problem for each wvalue of the eccentricity can
be continued to the energy level h(e) of the planar anisotropic Manev
problem (1), where

(-1 -VI=e)?

hle) = - 4et

The proof of Theorem 1 is given in Section 2.

The hydrogen atom interaction with a circular polarized microwave
field is a quiet well known problem in classical mechanics. There are
extensive literatures on this problem, for more details, see [3, 4], [7, 8,

In [31] the authors studied the hydrogen atom problem in a rotation
frame with the following Hamiltonian

1 1
H=-

2 .2

5 (P +1y) —apy +yp o
We consider the same potential but in fixed coordinates, and instead of
the perturbation ez with two more general perturbations e(ax + bx?)
and e(ax + by?).

+ex.

For the perturbation e(az +bz?) the corresponding Hamiltonian sys-

tem 1is
/

T = Pqg,
Y =y,
3 ;X
(3) pw——r—3—€(a+2bx),
Y
py 7”3,

with Hamiltonian

1
H=—
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For the perturbation e(az + by?) the following Hamiltonian system
becomes

T = Pa,
y/ - py7
x
(4) P, = —3 e
)
/o
py=—5 —c2by,

with Hamiltonian

1
H=-

We have the following two results.

h
Theorem 2. For h < 0, 0 < 34%‘ < 1,4b+3ah # 0 and e £ 0

sufficiently small a unique elliptic periodic solution with eccentricity
e = |3ah/(4b)| of the Kepler problem can be continued to the energy
level H = h of the hydrogen atom problem (3).

h
Theorem 3. For h < 0, 0 < 3% < 1,b—3ah # 0 and € # 0

sufficiently small a unique elliptic periodic solution with eccentricity
e = |3ah/b| of the Kepler problem can be continued to the energy level
H = h of the hydrogen atom problem (4).

Theorems 2 and 3 are proved in sections 3 and 4, respectively.

2. PROOF OF THEOREM 1

We change the equations of motion (1) to the McGehee coordinates
(r,0,v,u) as follows

(q1,q2) = r(cosB, sinf),
=12y = (py, p2) - (cos ), sinB),
T71/2U = (p17p2) ' (_ Sin@v COs 9)7
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for more details on these coordinates see [10, 11, 24]. So in the McGehee
coordinates the equations of motion (1) write

P =2y,

0 = r=3/2y,

1
(5) v =732 (u2 + 51)2 + ‘/1(9)) + 2r°2V4(6),
1 avy(0 dVs(0

o = r3/2 <_§m} N ;9( )) _ p5/2 ;g( ))

where .
€
) = ——, W) =——"-—,

1(6) V1+ecos?f 2(6) 1+ ecos?d
and the energy level H = h becomes
(6) g(u2 + %) + rVA(6) + Va(0) = r2h.

Note that the equations of motion (5) are defined for all (r,0,v,u) €
(0, +00) x St x R? with a collision singularity at r = 0. We can remove
this singularity with the change t — 7 of the independent variable

given by dt/dr = r°/?. The equations of motion (5) in the new time 7
become
7 = rv,
0 = ru,
(7) o =r(u? + 102 + V1(0)) + 2V5(0),
o (o MO i
2 do dg ’

here the dot denotes derivative with respect to 7. Now the equations
of motion (7) are defined for all (r,0,v,u) € [0, +00) x S! x R2.

Since if € = 0 the Hamiltonian (2) of the anisotropic Manev problem
becomes the Hamiltonian of the Kepler problem, we want to detect the
periodic solutions of the Kepler problem which can be continued to a
fix negative energy level H = h < 0 of the anisotropic Manev problem.

Using (6) from the energy level H = h < 0 we obtain
r=r(0,v,u,h) = fo+efi+O(),
where

u? 4+ v? =2
fo= ——

fi=

, 2h, B ' B
(u® +v* —2)(1 4 cos 20) — 8h
4h(u? 4+ v? — 2) '
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Now taking as the new independent variable the variable 6, the equa-
tions of motion (7) restricted to the energy level H = h < 0 become

dv 20w +v?2—2)  (u?+0v? —2)cos?0 — 8h

R — O 2

do 2u c 2u(u? +v?2 — 2 +0(%),
(8)

@_ —E—i- cos@sin8+o( 2)

do 5 "¢ u =

It is clear that computing periodic solutions of system (8), we are ob-
taining periodic solutions of system (1) in the energy level H = h < 0.

The unperturbed system when € = 0 is
dv_2u2+02—2 du v

®) 7 VR VA
which has the general solution
(10)

R i)

This is the solution of the planar Kepler problem with eccentricity e
and argument of the pericenter 6y, i.e. 0y is the angle which provides
the direction of the pericenter. Of course, for e = 0 this solution is
circular, and for e € (0, 1) it is elliptic, for more details see [34].

(v(0; e,00), u(B; e, 0p)) = (

We are interested in knowing what are the periodic solutions of the
Kepler problem which can be continued to periodic solutions of the
anisotropic Manev problem, i.e. what solutions (10) with eccentricity
e € [0,1) can be extended.

In order to apply the averaging theory to system (8) we identify our
variables with those of averaging theory given in [5], and we obtain

(o) (1))
o (i) ne(5)

where
2u? +v? —2 —16h + (—4 + 2u* + 20v?) cos? 0
Fo=——F—— FIu= 53 ;
2u 6'43(—24—1@ + v2)
v cos 0 sin
Fop = —3, Fig=——.

2 U
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The first variational equation of the unperturbed system (9) along the
periodic solution (10) with e € [0,1) is

Y3 Y Ys Ya)’
where
0Fy, O0Fy
ov ou

J =D, Fy(t,x(t; 2,0)) = ,
OFy 0Fp

ou v v=v(0;e,00),u=u(b;e,00)

and consequently

esin(f —6) 3 1—¢?
p l+ecos(@—06y) 2 2(1+ecos(d—0))?
1
-3 0

The Fundamental matrix M, (0) of system (11) such that M,(0) is the
identity matrix is

y1(05e,60) y2(0;e,00)

M. (0) = :
ys(0se,00) ya(0;e,00)
where
(0:¢.0,) V1 + ecosfy[4cos + e[cos (20 — 6y) + 3 cos O] |
hivet) = 4[1 + e cos (6 — 6y)]3/? ’
q(0)
0, 76 = P )
2(6 ¢, 0o) 4[1 4 ecos (0 — 60y)]?/2v/1 + ecos by
sin 8+/1 + e cos 6,
313(97 6700) = - )
24/1 + ecos (6 — 0y)
esin fsin By + 2 cos O[1 + e cos G|
Z/4(9, 6700) = )
24/(1 + ecosbp)(1 + ecos (0 — b))
where

q(0) = 8sin H+8e(2+cos f) cos 5

% sin g—i-ez(cos 0+3 cos (0 — 26,) sin6).
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Now we compute the functions (G, Gy) = M1 (0)Fy (0, z(t; z,0)) which
appear in the next integral

1 T
12 () =FG) =7 [ MOOR(C(0)de
0
and we obtain
G pi(9)
" 8(14 ecosy)32(e — 1) (1 + ecos (0 — b))’
G, — p2(0)

16(e2 — 1)(1 + ecos (0 — 0y))v/1 + ecos by’
where
p1(0) =[e* — 1 —16h + (e* — 1) cos 20 — 16eh cos (6 — 6y)]-
[2cosO(1 + ecosby) + esinfsinby] - (1 + ecos (0 — by))—
cos fsin 0(e® — 1)[16(1 + e cos fy) sin O+
e((e + 4 cos by + 3e cos 26,) sin 20+

16(2 + cos 0) sin® g sin fy) + 6e* sin? 6 sin 26,
po(6) =sin 0{10(e* — 1) — 16h(e* + 2) + 10(e* — 1) cos 20+
e[2(5e* — 32h — 5) cos () — 0y) — 16eh cos (20 — 20+
(e* — 1)(3cos (30 — 0) + Tcos (6 + 6y))].
Computing the integrals (12), we obtain

_ p3(6a90)
16me?(1 + ecos y)3/2(1 — €2)3/2’

92(6 90) _ p4(6760)
’ 8e3(1 — e2)y/1+ ecosby’

91(6, 80) =

where
ps = — 8e*V/1 — e2hr[4 cos by + e(cos 20y + 3)]+
(e = D[eA(V1I—e2 4+ e —1) +4e*(V1 — e+ €2 — 1) cos fy—
6e(2 — 2v1 — e + e2(V1 — €2 — 2)) cos 20y — (4 — 41 — 2+
e?(e® +3V1 — e — 5)) (4 cos 30y + e cos46,)],
pr=(1—vV1—e2+e*(V1—e2—8h—1))sinby+
(€2 —1)(4 — 4vV1 — €2 + e*(V1 — €2 — 3)) sin 36,.
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Let
agl (6, 00) agl (6, 00)
_ Oe 00y
m(e, 0p) = det dga(e,00)  Dgale, 0p)
Oe 00y

Now we have to study the solutions (e, 8y) of system g (e, 0y) = 0, g2(e,6p) =
0 with e € (0,1). Note that if e = 0 then gy (e, 8p) = 0 and ga(e, 8y) = 0,

and that in this case the averaging theory does not provide information

on the periodic solutions of system (8).

We first solve the equation gz (e, ) with respect to 0y, and we obtain
ten solutions as follows:
0k =0, 02 =,
03 = — arccos (—F(e)), 63 = —arccos (—F(e)) +,
05 = arccos (—F(e)), 65 = arccos (—F(e)) + ,

05 = — arccos F(e), 65 = — arccos F(e) + ,
05 = arccos F(e), 630 = arccos F(e) + ,
where
ro V204 VI =)L~ 16h) — (1 + VI~ & — 4h(3 + VI~ )]
e) = :

26@
Of course, g1(6p, €) = 0 if and only if p3(6y, e) = 0.
Case 1: 6y = 6} = 0. Substituting 6] into ps(e, ), we obtain
ps(e) = 16(e — 1)%(e +1)> — 8(1 4 €)V1 — €2(2 — 3€? + e* + 4e'h).
We solve p3(e) = 0 with respect to h, we have
3 R

By simple computation, we have

(14) h,(ﬁ)_4—4\/1—62—;:5(\/1—62—3)'

Let f(e) =4 —4v/1 —e? +€*(v/1 — e? — 3), we have

3e(l — /1 —e2)?
(15 fley = 2N
N
Note that f(0) = 0, then by (15), we deduce that f(e) > 0 for all
0 < e < 1. Then from (14), we have h/(e) > 0 for all 0 < e < 1, so h(e)

is a strictly monotone function on (0,1). Since h(1) = 0, h(e) < 0 in
the interval (0,1).




Next we can compute m(e, 6}) and we obtain

45 —=3V1—e) +e'(V1—e? —5) +16(vV1—e - 1)
27 (1 + ) (V1= ) |

Let g(e) = 4€2(5 — 3v1 —€2) + e*(v/1 — €2 — 5) + 16(v/1 — €2 — 1), we

(16)

have
, 5e(8 — 8e? + et — 8v/1 — €2 + 4e*V/1 — ¢€2)
a7 ge)=- |
N
Let y(e) = 8 — 8¢* + e* — 81 — €2 + 4e*V/1 — €2, we have
4e(l — /1 —¢)3
(19 y(e)= A2 s

Vi e
for e € (0,1). Note that y(0) = 0, and from (17) and (18) we can
deduce that y(e) > 0 and ¢'(e) < 0 in the interval (0,1). Then, since
g(0) = 0 we have g(e) < 0 in the interval (0,1). So, from (16), we have
m(e,0) > 0 for e € (0,1). Therefore, from the averaging theory (see
[5]) for every value of the eccentricity e € (0,1) and for e sufficiently
small the periodic solution (v(f;e,0),u(f;e,0)) (given in (10)) of the
Kepler problem such that (v(0;e,0),u(0;e,0)) = (0,4/1+€), can be
continued to the energy level h = h(e) < 0 of the anisotropic Manev
problem (1).

Case 2: 6y = 02 = m. Working as in the previous case we obtain
that the periodic solution (v(6;e, m),u(d; e, 7)) which can be continued
from the Kepler problem to the anisotropic Manev problem is the same
that in Case 1, because (v(0;e,7),u(0;e,7)) = (0,1 +e), i.e. both
periodic solutions have the same initial conditions.

Case 3: 0y = 63. Now solving p3(e) = p3(e, 03) = 0 with respect to
h, we obtain the two solutions
hs(e) = s+ (e)

1—e?
4eb 7

where sy (e) is given by

—e?[d+et —4V1 —e? + 2 (3V1 —e2 - 5)]+
\/—[66 + €2(48 — 32V1 — €2) + 6e* (V1 —e2 — 3) + 32(V1 — €2 — 1)].

Since substituting 6y = 63 and h = hi(e) into m(e, ), we found
m(e,03) = 0 for all e € (0,1), the averaging theory does not provide
information if the corresponding periodic solution of the Kepler prob-
lem (v(0;e,63),u(f;e,03)) can be continued or not to the anisotropic
Manev problem (1).
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For the cases 96 for j = 4,...,10, we also found that m(e,6}) =
0 for all e € (0,1), so again the averaging theory does not provide
information about the possible continuation of this periodic solution to
the anisotropic Manev problem (1).

In conclusion the averaging theory provides a unique periodic solu-
tion of the Kepler problem for each value of the eccentricity e € (0,1)
which can be continued to the anisotropic Kepler problem (1). This
completes the proof of Theorem 1.

3. PROOF OF THEOREM 2

In the McGehee coordinates the equations of motion (3) become

r = 7’_1/2

0 =13,

v,

1
(19) v =732 (u2 + 51)2 - 1) + 67‘%(& cos 0 + 2br cos® 6),

1
u' = r_3/2(—§uv) + 57“%(@ sin 6 4 2br cos 0 sin ),

and the energy level H = h writes
1

20 —(u? +v*) — 1+ e(ar? cos 0 + br® cos* ) = rh.
2

Then doing the change of time ¢t — 7 given by dt/dr = 32, the
equations of motion (19) in the new time 7 are

7 =10,
0 = u,
(21) b =u?+ 0% — 1 4 e(ar? cos 6 + 2br3 cos? 6),
1
U= —5uv — e(ar?sin @ + 2br® cos @ sin 0).

Note that these equations of motion are defined for all (r,0,v,u) €
[0, +00) x St x R,

Computing r from the energy level H = h < 0, where H is given in
(20) we have

= T(@,U,U, h) = fO +€fl + 0(82)7

where
u? + 0% —2
Jo =
F (u? + v? — 2)? cos B[2ah + b(u? + v? — 2) cos §]
1= :

8ht
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Then the equations of motion (21) in the energy level H = h < 0
become

22)
@ - u? + 12 -2 _€(u2+1)2 —2)2[ah+b(u2—|—v2 —Q)COSG] cos 0
o 2u 4h3y .
du _ S (UQ-I—UQ—2)2[ah+b(u2+vz—2)0089]51119+O< 2)
do o 2 < 4h3u 7).

Since hydrogen atom problem (3) for £ = 0 is the Kepler problem (9),
as before we take h negative because we want to continue the periodic
solutions of the Kepler problem to periodic solutions of the hydrogen
atom problem (3).

As in the previous problem we shall use the averaging theory for
studying the periodic solutions of system (9) which can be continued
to system (22).

We use the notation of [5] for applying the averaging theory, thus we
have from system (22) that

2u? +v? —2 _ —16h + (—4 + 2u® 4+ 2v?) cos® 0

du(—2 + u? + v?)
cosfsinf

Y

(%
Foz = —3, Fiy =

Now we compute the functions (G, Gy) = M1 (0)Fy (0, z(t; z,0)) which
appear in the integral (12) and we obtain

. pi(9)

8h3(1 + ecos (0 — 0))4(1 + e cos )2
_ pa(0)
~ 8h3(1+ecos (0 — )1+ ecosby

I

Go

where

p1(0) =(e* — 1)*(b(e* — 1) cos @ + ah(1 + ecos (6 — 6;))-
(cos20 — 3 —2ecosby(2+ cos (1 — cos @ + ecosby))+

e(cos — 4 — 3ecosby) sin O sin ),

+0(e?),

p2(0) =(e? — 1)*(b(e* — 1) cos @ + ah(1 + ecos (6 — b)) (cos O + e cos by) sin 6,
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Computing the integrals (12) for the hydrogen atom problem (22) we
get

g1 (67 00) =

Y

V1 — e2(Tbe* + 12ah + 4e(4b + 3ah) cos by + 9be? cos 26,)
32h3(1 + e cos fy)?
besin Oyv/1 — €2
92(6, 60) = .
16h3+/1 + e cos By

Now we have to study the solutions (e, ) of the system g;(e, 6y) =
0, g2(e,0y) = 0 with e € (0, 1), as before e cannot be zero.

First we solve the equation gs(e, fy) with respect to 0y, and we obtain
two solutions
65 = 0, 62 = .
Case 1: 0y = 6} = 0. Substituting 6} into g;(e,6p), we have
V1 — e2[16be? + 12ah + 4e(4b + 3ah)]

gi(e) = 3 .
fi(e) 32h3(1 + €)}

We solve g;(e) = 0 with respect to e, we have

3ah

4ph -
The solution e = 1 should be eliminated since we study which periodic
solutions of the Kepler problem can be continued to periodic solutions
of the perturbed hydrogen atom problem, and fore = 1 the solutions
of the Kepler problem are parabolas.

e=1, e=

3ah 3ab |4b+ 3ah
4b°7) 512K b
Therefore, from the averaging theory we obtain that if the parameters a
and b of the perturbation satisfy 0 < —3ah/4b < 1, m(—3ah/4b,0) # 0
and e # 0 is sufficiently small, then the periodic solution

(v(0; —3ab/(512h%),0), u(; —3ab/(512Rh%), 0))

of the Kepler problem can be continued to the energy level h < 0 of
the perturbed hydrogen atom problem (3).

By direct computation we have m | —

Case 2: 6y = 65 = 7. Substituting 67 into g1 (e, 6p), we obtain

7 (e) V1 — €e2[16be? + 12ah — 4e(4b + 3ah)]
e) = .
. 3203(1 — e)}
We solve g1(e) = 0 with respect to e and we get

Sah
4p -

e=—1, e=
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3ah 3ab |4b+ 3ah
") T s b
theory we obtain that if the parameters a and b of the perturbation
satisfy 3ah/4b € (0,1), m(3ah/(4b), ) # 0 and for € # 0 is sufficiently
small, then the periodic solution of the Kepler problem

(v(0;3ab/(4b), ), u(6;3ab/(4b), 7))

can be continued to the energy level h < 0 of the perturbed hydrogen
atom problem (3). This completes the proof of Theorem 2.

Since m , as before from the averaging

4. PROOF OF THEOREM 3

The proof of Theorem 3 is similar to the proof of Theorem 2.

We also take McGehee coordinates for the equations of motion (4)
and doing the change of time ¢ — 7 given by dt/dr = r3/?, the equations
of motion (4) in the new time 7 become

T =rv,
0 =u,
(23) o =u?+ 30 — 1+ e(ar? cos§ + 2br® sin® §),
1
= —=uv — e(ar®sin — 2br® cos @ sin 6).

and the energy level H = h becomes
1
(24) §(u2 + U2) -1+ 5(@7"2 cos 0 + br? sin? ) = rh.

From this energy relation H = h < 0 we can compute

r=r(0,v,u,h) = fo+efi +0(?),

where
u? + 0% —2
o= —
s (u? +v? — 2)%[2ah cos 0 + b(u? + v* — 2) sin? 4]
1= :

8h*
Then the equations of motion (23) restricted to the energy level H =
h <0 are

dv 20 +0* =2 (v +0° —2)*[ahcosf + b(u® + v — 2)sin®f]

a0 2u ¢ 4h3u

du v (u? 4 0% —2)2[ah — b(u® + v? — 2) cos O] sin O
= —;+¢ +

- 2
0 2 ey 0(e%).
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The unperturbed system when ¢ = 0 is again the Kepler problem
given in (9) having the general solution provided in (10).

Using the notation of [5] we have for system (23) that

2u? 4+ v? -2 v
Fo1 = S Fi=—5,
(u* +v? — 2)*[ah cos 0 + b(u* + v? — 2) sin” 0]
Foo= — :
4h3u
P (u? + v* — 2)?[ah — b(u® + v* — 2) cos ] sin §
12 = :

4h3u
Now we compute the functions (G, Gy) = M1 (0)Fy (0, z(t; z,0)) which
appear in the integral (12) and we obtain
G, = o (9> 3
32h3(1 +ecos (6 — 6y))°(1 4+ ecosby)?
G, = p2(0)
16h3(1 + ecos (8 — 6y))4/1 + ecos by’

Y

where

p1(0) =(1 — e*)*(—4(ahcos O(1 + ecos (6 — 6y))* + b(e* — 1) sin §)-
(2cos (1 + ecosby) + esinfsinfy) — ((b(1 — *) cos O+
ah(1+ ecos (0 — b)) sinO(16(1 + e cos ) sin 6+

0
e((e 4 4 cos By + 3e cos 20 sin 26 + 16(2 + cos 0) sin? 3 sin 0y )+

6e sin? ) sin 26y))),
p2(0) =(e* — 1)*(3b — 3be® + a(e* + 2)hcos — b(e* — 1) cos 20+
ae*h cos (0 — 26p) + 3be cos (0 — 0y) — 3be® cos (6 — bp)+
aeh cos (20 — 6y) + 3aeh cos Oy + be cos (6 + 0y)—
be® cos (0 + 6p)) sin 6,
Computing the integrals (12) for our system (23) we get
V1 —¢€%[2e(b — 3ah) cos 0 + 3be? cos 20 — be* — 6ah)
n= 16h3(1 + e cos y)3/2 ’
be sin Opv/1 — €2
T I T ecosty

Now we have to study the solutions (e, fy) of the system g;(e,6y) =
0, ga(e,0p) = 0 with e € (0,1). We first solve the equation gs(e,6y)
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with respect to 6y, and we obtain the two solutions

65 =0, 62 = .

Case 1: 6y = 6} = 0. Substituting 6} into g1 (e, 6y), we get

V1 — e2(2be* + 2e(b — 3ah) — 6ah)
16h3(1 + €)2

We solve g1(e) = 0 with respect to e, we have

gi(e) =

3ah
(& s € b
3ah 3ab |b— 3ah
By direct computations we have m %,O = _32ah5 b -

Therefore for every e = 3ah/b € (0,1), m(3ah/b,0) # 0 and for £ # 0

sufficiently small the periodic solution of the Kepler problem
(v(0;3ab/b,0),u(0;3ab/b,0))

can be continued to the energy level h < 0 of the perturbed hydrogen
atom problem (4).

Case 2: , = 63 = . Substituting 63 into g;(e, f), we obtain
V1 —e2(2be* — 2e(b — 3ah) — 6ah)
16h3(1 — ¢)2

We solve g1(e) = 0 with respect to e, we have

gi(e) =

3ah
=1 - 2
e , e 2
3ah 3ab |b— 3ah
Since m (—%, T = 32ah5 2 ¢ , for every value of the eccentric-

ity e = —3ah/b € (0,1), m(—3ah/b,w) # 0 and for ¢ # 0 sufficiently
small the periodic solution of the Kepler problem
(v(0;3ab/b, ), u(0; 3ab/b, ))

can be continued to the energy level h < 0 of the perturbed hydrogen
atom problem (4). This completes the proof of Theorem 3.
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