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a b s t r a c t 

A bicentric quadrilateral is a tangential cyclic quadrilateral. In a tangential quadrilateral, 

the four sides are tangents to an inscribed circle, and in a cyclic quadrilateral the four 

vertices lie on a circumscribed circle. In this paper, we classify all planar central config- 

urations of the 4-body problem, where the four bodies are at the vertices of a bicentric 

quadrilateral. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction and statement of the results 

The well-known Newtonian n -body problem concerns with the motion of n mass points with positive mass m i moving 

under their mutual attraction in R 

d in accordance with Newton’s law of gravitation. 

The equations of the motion of the n -body problem are: 

ẍ i = −
n ∑ 

j =1 , j � = i 

m j (x i − x j ) 

r 3 
i j 

, 1 ≤ i ≤ n, 

where we have taken the unit of time in such a way that the Newtonian gravitational constant be one, and x i ∈ R 

d (i = 

1 , . . . , n ) denotes the position vector of the i -body, r i j = | x i − x j | is the Euclidean distance between the i -body and the j - 

body. 

Alternatively the equations of the motion can be written 

m i ̈x i = ∇ i U(x ) , 1 ≤ i ≤ n, 

where x = (x 1 , . . . , x n ) , and 

U(x ) = 

∑ 

1 ≤i< j≤n 

m i m j 

| x i − x j | , 

is the potential of the system. 

The solutions of the 2-body problem (also called the Kepler problem) has been completely solved. Unfortunately the 

solutions for the n -body ( n ≥ 3) is still an open problem. 

For the Newtonian n -body problem the simplest possible motions are such that the configuration is constant up to rota- 

tions and scaling. Only some special configurations of particles are allowed in such motions called homographic solutions. 

Wintner [36] called them central configurations. 
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