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ARTICLE INFO ABSTRACT

MSsC: A bicentric quadrilateral is a tangential cyclic quadrilateral. In a tangential quadrilateral,

70F07 the four sides are tangents to an inscribed circle, and in a cyclic quadrilateral the four
vertices lie on a circumscribed circle. In this paper, we classify all planar central config-
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Bicentric quadrilateral

1. Introduction and statement of the results

The well-known Newtonian n-body problem concerns with the motion of n mass points with positive mass m; moving
under their mutual attraction in RY in accordance with Newton’s law of gravitation.
The equations of the motion of the n-body problem are:
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where we have taken the unit of time in such a way that the Newtonian gravitational constant be one, and x; € R4 (i =
1,...,n) denotes the position vector of the i-body, rj; = |x; — ;| is the Euclidean distance between the i-body and the j-
body.

Alternatively the equations of the motion can be written
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where x = (X1, ..., Xp), and
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is the potential of the system.

The solutions of the 2-body problem (also called the Kepler problem) has been completely solved. Unfortunately the
solutions for the n-body (n>3) is still an open problem.

For the Newtonian n-body problem the simplest possible motions are such that the configuration is constant up to rota-
tions and scaling. Only some special configurations of particles are allowed in such motions called homographic solutions.
Wintner [36] called them central configurations.
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