HOPF BIFURCATION IN HIGHER DIMENSIONAL DIFFERENTIAL SYSTEMS VIA THE AVERAGING METHOD

JAUME LLIBRE AND XIANG ZHANG

Dedicated to the memory of Professor Ye Yanqian

We study the Hopf bifurcation of \mathscr{C}^3 differential systems in \mathbb{R}^n showing that l limit cycles can bifurcate from one singularity with eigenvalues $\pm bi$ and n-2 zeros with $l \in \{0, 1, \ldots, 2^{n-3}\}$. As far as we know this is the first time that it is proved that the number of limit cycles that can bifurcate in a Hopf bifurcation increases exponentially with the dimension of the space. To prove this result, we use first-order averaging theory. Further, in dimension 4 we characterize the shape and the kind of stability of the bifurcated limit cycles. We apply our results to certain fourth-order differential equations and then to a simplified Marchuk model that describes immune response.

1. Introduction and statement of the main results

In this work we study the Hopf bifurcation of \mathscr{C}^3 differential systems in \mathbb{R}^n with $n \ge 3$ by using first-order averaging theory. We assume that these systems have a singularity at the origin, whose linear part has eigenvalues $\varepsilon a \pm bi$ and εc_k for $k = 3, \ldots, n$, where ε is a small parameter. Such systems can be written in the form

$$\dot{x} = \varepsilon a x - b y + \sum_{i_1 + \dots + i_n = 2} a_{i_1 \dots i_n} x^{i_1} y^{i_2} z_3^{i_3} \dots z_n^{i_n} + \mathcal{A},$$
(1)
$$\dot{y} = b x + \varepsilon a y + \sum_{i_1 + \dots + i_n = 2} b_{i_1 \dots i_n} x^{i_1} y^{i_2} z_3^{i_3} \dots z_n^{i_n} + \mathcal{B},$$

$$\dot{z}_k = \varepsilon c_k z_k + \sum_{i_1 + \dots + i_n = 2} c_{i_1 \dots i_n}^{(k)} x^{i_1} y^{i_2} z_3^{i_3} \dots z_n^{i_n} + \mathcal{C}_k, \quad k = 3, \dots, n,$$

where $a_{i_1\cdots i_n}, b_{i_1\cdots i_n}, c_{i_1\cdots i_n}^{(k)}, a, b$ and c_k are real parameters, $ab \neq 0$, and \mathcal{A}, \mathcal{B} and \mathcal{C}_k are the Lagrange expressions of the error function of third order in the expansion of the functions of the system in Taylor series.

MSC2000: 34C23, 34C29, 37G15.

Keywords: limit cycles, generalized Hopf bifurcation, averaging theory.