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We study the Hopf bifurcation of C3 differential systems in Rn showing that
l limit cycles can bifurcate from one singularity with eigenvalues ±bi and
n− 2 zeros with l ∈ {0, 1, . . . , 2n−3}. As far as we know this is the first time
that it is proved that the number of limit cycles that can bifurcate in a Hopf
bifurcation increases exponentially with the dimension of the space. To
prove this result, we use first-order averaging theory. Further, in dimension
4 we characterize the shape and the kind of stability of the bifurcated limit
cycles. We apply our results to certain fourth-order differential equations
and then to a simplified Marchuk model that describes immune response.

1. Introduction and statement of the main results

In this work we study the Hopf bifurcation of C3 differential systems in Rn with
n ≥ 3 by using first-order averaging theory. We assume that these systems have
a singularity at the origin, whose linear part has eigenvalues εa ± bi and εck for
k = 3, . . . , n, where ε is a small parameter. Such systems can be written in the
form

(1)

ẋ = εax − by+
∑

i1+···+in=2

ai1···in x i1 yi2 zi3
3 · · · z

in
n +A,

ẏ = bx + εay+
∑

i1+···+in=2

bi1···in x i1 yi2 zi3
3 · · · z

in
n +B,

żk = εckzk +
∑

i1+···+in=2

c(k)i1···in
x i1 yi2 zi3

3 · · · z
in
n +Ck, k = 3, . . . , n,

where ai1···in , bi1···in , c(k)i1···in
, a, b and ck are real parameters, ab 6=0, and A, B and Ck

are the Lagrange expressions of the error function of third order in the expansion
of the functions of the system in Taylor series.
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