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Abstract. In 1976 Jouanolou showed that if the number of invariant algebraic
hypersurfaces of a polynomial vector field in Rn or Cn of degree d is at least(

d + n− 1
n

)
+ n, then the vector field has a rational first integral. His

proof used sophisticated tools of algebraic geometry. We provide an easy and
elementary proof of Jouanolou’s result using linear algebra.

1. Introduction

Nonlinear ordinary differential equations appear in many branches of applied
mathematics, physics and, in general, in applied sciences. For a differential system
or a vector field defined in Rn or Cn the existence of a first integral reduces the
study of its dynamics in one dimension; of course working with real or complex
time, respectively. So a natural question is: Given a vector field on Rn or Cn,
how to recognize if this vector field has a first integral? This question has no a
satisfactory answer up to now. Many different methods have been used for studying
the existence of first integrals of vector fields. Some of these methods based on:
Noether symmetries [4], the Darboux theory of integrability [7], the Lie symmetries
[13], the Painlevé analysis [2], the use of Lax pairs [11], the direct method [8] and [9],
the linear compatibility analysis method [14], the Carlemann embedding procedure
[3] and [1], the quasimonomial formalism [2], etc.

In this paper we shall study the existence of rational first integrals of a polynomial
vector field in Rn or Cn. The best answer to this question was given by Jouanolou
[10] in 1979 inside the Darboux theory of integrability. This theory of integrability
provides a link between the integrability of polynomial vector fields and the number
of invariant algebraic hypersurfaces that they have.

Darboux [7] showed how can be constructed a first integral of polynomial vector
fields in R2 or C2 possessing sufficient invariant algebraic curves. In particular he
proved that if a planar polynomial vector field in R2 or C2 of degree d has at least(

d + 1
2

)
+ 1 invariant algebraic curves, then it has a first integral, which can be

computed using these invariant algebraic curves. Jouanolou [10] shows that if the
number of invariant algebraic curves of a planar polynomial vector field in R2 or

C2 of degree d is at least
(

d + 1
2

)
+ 2, then the vector field has a rational first

integral, which also can be computed using the invariant algebraic curves.
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In fact the results of the previous paragraph for polynomial vector fields in R2

or C2 extend to polynomial vector fields in Rn or Cn. Thus it is known (see for
instance [12]) that if a polynomial vector field of degree d in Rn or Cn has at least(

d + n− 1
n

)
+ 1 invariant algebraic hypersurfaces, then it has a first integral,

which can be computed using these invariant algebraic hypersurfaces. Jouanolou
[10] shows that if the number of invariant algebraic hypersurfaces of a polynomial

vector field in Rn or Cn of degree d is at least
(

d + n− 1
n

)
+ n, then the vector

field has a rational first integral, which again can be computed using these invariant
algebraic hypersurfaces.

The proof of Jouanolou uses sophisticated techniques of algebraic geometry. For
polynomial vector fields in R2 or C2 an elementary proof of Jouanolou’s result was
given in [5, 6]. Up to now an easy proof of Jouanolou’s result in Rn or Cn was not
given. The goal of this paper is to provided such elementary proof. Our proof is
shorter, self–contained and only uses linear algebra.

The paper is organized as follows. In Section 2 we provide the notation and
definitions, and we state the Jouanolou’s result. In Section 3 we work with the
notion of functionally independence and first integrals. Finally in Section 4 we
prove Jouanolou’s result.

2. Definitions and statement of the main result

Since any polynomial differential system in Rn can be thought as a polynomial
differential system inside Cn we shall work only in Cn. If our initial differential
system is in Rn, once we get a complex first integral of this system thought inside
Cn taking the square of the modulus of this complex integral we have a real first
integral. Moreover if that complex first integral is rational, the real one defined as
before also is rational. In short in the rest of the paper we work all the time in Cn.

As usual C[x] = C[x1, . . . , xn] denotes the ring of all complex polynomials in the
variables x1, . . . , xn. We consider the polynomial vector field in Cn

(1) X =
n∑

i=1

Pi(x1, . . . , xn)
∂

∂xi
, (x1, . . . , xn) ∈ Cn,

where Pi = Pi(x1, . . . , xn) ∈ C[x] for i = 1, . . . , n. The integer d = max{degP1, . . .,
degPn} is the degree of the vector field X . Usually for simplicity the vector field X
will be represented by (P1, . . . , Pn).

Let f = f(x) ∈ C[x]. We say that {f = 0} ⊂ Cn is an invariant algebraic
hypersurface of the vector field X if there exists a polynomial k ∈ C[x] such that

Xf =
n∑

i=1

Pi
∂f

∂xi
= kf.

The polynomial k is called the cofactor of f = 0. Note that from this definition the
degree of k is at most d− 1, and also that if an orbit x(t) of the vector field X has
a point on {f = 0}, then the whole orbit is contained in {f = 0}. This justifies the
name of invariant algebraic hypersurface, it is invariant by the flow of the vector
field X .
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Let D be an open subset of Cn having full Lebesgue measure in Cn. A non–
constant holomorphic function H : D → C is a first integral of the polynomial
vector field X on D if it is constant on all orbits x(t) of X contained in D; i.e.
H(x(t)) = constant for all values of t for which the solution x(t) is defined and
contained in D. Clearly H is a first integral of X on D if and only if XH = 0 on
D. Of course a rational first integral is a first integral given by a rational function.

The Jouanolou’s result mentioned in the introduction can be stated as follows.

Theorem 1. Let X be a polynomial vector field defined in Cn of degree d > 0.

Then X admits
(

d + n− 1
n

)
+ n irreducible invariant algebraic hypersurfaces if

and only if X has a rational first integral.

Under the assumptions of Theorem 1 all the orbits of the vector field X are
contained in invariant algebraic hypersurfaces.

3. Preliminary result

Assume that Hj(x) for j = 1, . . . , m are holomorphic first integrals of system (1)
defined in a full Lebesgue measurable subset D1 of Cn. For each x ∈ D1 let r(x)
be the rank of the m vectors ∇H1(x), . . . ,∇Hm(x) in Cn, where ∇Hk(x) denotes
the gradient of the function Hk(x) with respect to x.

We say that H1, . . . , Hm are functionally independent in D1 if r(x) = m for all
x ∈ D1 except possibly a subset of Lebesgue measure zero.

We say that H1, . . . , Hm are k–functionally independent in D1 if there exist
k of these H1, . . . , Hm which are functionally independent in D1, and any k + 1
elements of {H1, . . . , Hm} are not functionally independent in any positive Lebesgue
measurable subset of D1.

It is easy to check that if m first integrals H1, . . . , Hm of a polynomial vector
field in Cn are k–functionally independent then k ≤ n− 1.

Theorem 2. For k < m we assume that H1, . . . ,Hm are k–functionally indepen-
dent first integrals of the polynomial vector field X given by (1). Without loss of
generality we can assume that H1, . . . , Hk are functionally independent.

(a) For each s ∈ {k + 1, . . . , m} there exist holomorphic functions Cs1(x), . . .,
Csk(x) defined on a full Lebesgue measurable subset of Cn such that

(2) ∇Hs(x) = Cs1(x)∇H1(x) + . . . + Csk(x)∇Hk(x).

(b) For every s ∈ {k + 1, . . . , m} and j ∈ {1, . . . , k} the function Csj(x) (if not
a constant) is a first integral of system (1).

Proof. Let D1 be the full Lebesgue measurable subset of Cn where the first integrals
H1, . . . ,Hm are k–functionally independent.

From the assumptions there exists a full measurable subset D2 ⊂ D1 such that
for each x ∈ D2, ∇H1(x), . . . ,∇Hk(x) are linearly independent in Cn, and such
that for each x ∈ D2, s ∈ {k + 1, . . . , m}, the vector ∇Hs(x) is linearly dependent
on ∇H1(x), . . . ,∇Hk(x) in Cn. So there exist functions Cs1(x), . . . , Csk(x) such
that the equality (2) holds for every x ∈ D2. These functions Cs1(x), . . . , Csk(x)
defined on D2 can be expressed in function of the ∇Hj ’s for j = 1, . . . , k, s using
the Cramer’s rule. So they are holomorphic in D2 because the functions H1, . . . , Hk
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and Hs are holomorphic and the gradient vectors of the functions H1, . . . ,Hk has
rank k. This proves statement (a).

The points x which appear in the following expressions are points of D2. For
any i, j ∈ {1, . . . , n} from (2) we have

∂Hs

∂xi
= Cs1(x)

∂H1

∂xi
+ . . .+Csk(x)

∂Hk

∂xi
and

∂Hs

∂xj
= Cs1(x)

∂H1

∂xj
+ . . .+Csk(x)

∂Hk

∂xj
.

Derivating these two equations with respect to xj and xi respectively, and subtract-
ing the two resulting equations we get

(3)
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi
+ . . . +

∂Csk

∂xi

∂Hk

∂xj
− ∂Csk

∂xj

∂Hk

∂xi
= 0.

Since k ≤ n− 1. We consider two cases. First we assume that k = n− 1. From
(3) we get

∑

1≤i<j≤n

((
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi
+ . . . +

∂Csk

∂xi

∂Hk

∂xj
− ∂Csk

∂xj

∂Hk

∂xi

)
·

∑

σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2


 = 0,

where σ is a permutation of {1, . . . , n} \ {i, j} and the second summation is taken
over all these possible permutations; τ evaluated on a permutation of {1, . . . , n} is
the minimum number of transpositions for passing the permutation to the identity.
In fact this last equation can be written as

(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂x1

∂Cs1

∂x2
. . .

∂Cs1

∂xn

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This equality follows from the following two facts

∑

1≤i<j≤n

(
∂Cs1

∂xi

∂H1

∂xj
− ∂Cs1

∂xj

∂H1

∂xi

) ∑

σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂x1

∂Cs1

∂x2
. . .

∂Cs1

∂xn

∂H1

∂x1

∂H1

∂x2
. . .

∂H1

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and for l = 2, . . . , k

∑
1≤i<j≤n

(
∂Csl

∂xi

∂Hl

∂xj
− ∂Csl

∂xj

∂Hl

∂xi

) ∑
σ(k1,k2...,kn−2)

(−1)τ(ijk1k2...,kn−2)
∂H2

∂xk1

∂H3

∂xk2

. . .
∂Hn−1

∂xkn−2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Csl

∂x1

∂Csl

∂x2
. . .

∂Csl

∂xn

∂Hl

∂x1

∂Hl

∂x2
. . .

∂Hl

∂xn

∂H2

∂x1

∂H2

∂x2
. . .

∂H2

∂xn
...

...
. . .

...
∂Hn−1

∂x1

∂Hn−1

∂x2
. . .

∂Hn−1

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

From (4) we have that for each x ∈ D2 the vector ∇Cs1(x) belongs to the n− 1
dimensional vectorial space generated by {∇H1(x), . . . ,∇Hn−1(x)}, denoted by
Pn−1(x). By the definition of first integral we have that for all x ∈ D2

∂Hj(x)
∂x1

P1(x) + . . . +
∂Hj(x)

∂xn
Pn(x) = 0, for j = 1, . . . , n− 1.

So for each x ∈ D2 the vector X (x) = (P1(x), . . . , Pn(x)) is orthogonal to the n− 1
dimensional vectorial space Pn−1(x). Hence we have

∂Cs1(x)
∂x1

P1(x) + . . . +
∂Cs1(x)

∂xn
Pn(x) = 0, for all x ∈ D2.

This proves that the function Cs1 (if not a constant) is a first integral of the vector
field X defined on D2.

Similar arguments can verify that the functions Csj (if not constants), j =
2, . . . , k, are also first integrals of X . Hence statement (b) is proved if k = n− 1.

Now we suppose that k < n−1. Working in a similar way to the proof of the case
k = n−1 and taking into account that the functions H1, . . . ,Hm are k–functionally
independent in D2, for any i1, . . . , ik+1 such that 1 ≤ i1 < i2 < . . . < ik+1 ≤ n and
for each x ∈ D2 we have that

(5)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Cs1

∂xi1

∂Cs1

∂xi2

. . .
∂Cs1

∂xik+1

∂H1

∂xi1

∂H1

∂xi2

. . .
∂H1

∂xik+1

...
...

. . .
...

∂Hk

∂xi1

∂Hk

∂xi2

. . .
∂Hk

∂xik+1

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This implies for all x ∈ D2 that ∇Cs1(x) belongs to the k-dimensional vectorial
space generated by {∇H1(x), . . . ,∇Hk(x)}, denoted by Pk(x).

On the other hand since the functions Hj(x) for j = 1, . . . , k are first integrals
of the vector field X , for each x ∈ D2 the vector X (x) is orthogonal to the vectorial
space Pk(x), and so X (x) is orthogonal to ∇Cs1(x). This means that Cs1(x) is a
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first integral of the vector field X defined on D2. Similar arguments show that Csj

for j = 2, . . . , k are also first integrals of system (1). This completes the proof of
statement (b). ¤

4. Proof of Theorem 1

The “if” part of Theorem 1 is obvious. In what follows we shall prove the “only
if” part.

Let {fi(x) = 0} for i = 1, . . . ,

(
d + n− 1

n

)
+ n be invariant algebraic hyper-

surfaces of the polynomial vector field X with the cofactor ki(x). Then deg ki(x) ≤
d−1. We note that each polynomial ki(x) is uniquely determined by its coefficients
and so it is a vector of the vectorial space V formed by all polynomials of C[x] of

degree less than or equal to d − 1. It is easy to check that N =
(

d + n− 1
n

)
is

the dimension of the vectorial space V over the field C.
Let p be the dimension of the vectorial subspace of V generated by {k1(x), . . .,

kN+n(x)}. Then we have p ≤ N . Now in order to simplify the proof and the nota-
tion we shall assume that p = N and that k1(x), . . . , kN (x) are linearly independent
in V. If p < N the proof would follows exactly equal using the same arguments.

For each s ∈ {1, . . . , n} there exists a vector (σs1, . . . , σsN , 1) ∈ CN+1 such that

(6) σs1k1(x) + . . . + σsNkN (x) + kN+s(x) = 0.

From the definition of the invariant algebraic hypersurface {fi = 0} we get that
ki = X fi/fi. Now equation (6) can be written as X (log (fσs1

1 . . . fσsN

N fN+s)) =
0. This means that the functions Hs = log (fσs1

1 . . . fσsN

N fN+s) for s = 1, . . . , n
are holomorphic first integrals of the vector field X , defined on a convenient full
Lebesgue measurable subset D3 of Cn.

We claim that the n first integrals Hi’s are functionally dependent on any positive
Lebesgue measurable subset of D3. Otherwise there exists a positive Lebesgue
measurable subset D4 of D3 where they are functionally independent, then from
the definition of first integral we have

∂Hi(x)
∂x1

P1(x) + . . . +
∂Hi(x)

∂xn
Pn(x) = 0, for i = 1, . . . , n and for all x ∈ D4,

and from the functionally independence this last homogeneous linear system of
dimension n only has the trivial solution Pi(x) = 0 for i = 1, . . . , n on D4, and
consequently the vector field X ≡ 0 in Cn, in contradiction with the fact that X
has degree d > 0. So the claim is proved.

We define

r(x) = rank{∇H1(x), . . . ,∇Hn(x)} and m = max{r(x) : x ∈ D3}.
Then there exists an open subset O of D3 such that m = r(x) for each x ∈ O and
m < n. Without loss of generality we can assume that {∇H1(x), . . . ,∇Hm(x)} has
the rank m for all x ∈ O. Therefore, by Theorem 2(a) for each x ∈ O there exist
Ck1(x), . . . , Ckm(x) such that

(7) ∇Hk(x) = Ck1(x)∇H1(x) + . . . + Ckm(x)∇Hm(x), k = m + 1, . . . , n.

By Theorem 2(b) it follows that the function Ckj(x) (if not a constant) for j ∈
{m + 1, . . . , n} is a first integral of the vector field X defined on O.
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From the construction of Hi’s we know that each ∇Hi is a vector of rational
functions. Since the vectors {∇H1(x), . . . ,∇Hm(x)} are linearly independent for
each x ∈ O, solving system (7) we get a unique solution (Ck1(x), . . . , Ckm(x)) on
O for every k = m + 1, . . . , n. Clearly each function Ckj(x) for j ∈ {1, . . . , m} is
rational and by Theorem 2(b) it satisfies

∂Ckj

∂x1
P1 + . . . +

∂Ckj

∂xn
Pn = 0 on O.

Since O is an open subset of Cn and Ckj(x) is rational, it should satisfy the last
equation in Cn except possibly a subset of Lebesgue measure zero where Ckj is not
defined. Hence if some of the functions Ckj(x)’s is not a constant, it is a rational
first integral of the vector field X .

Now we shall prove that some function Ckj is not a constant. Equation (7)
implies that if all functions Ck1, . . . , Ckm are constants, then Hk(x) = Ck1H1(x) +
. . .+CkmHm(x)+ log Ck, where Ck is a constant. So we have fσk1

1 . . . fσkN

N fN+k =
Ck (fσ11

1 . . . fσ1N

N fN+1)
Ck1 . . . (fσm1

1 . . . fσmN

N fN+m)Ckm for k ∈ {m+1, . . . , n}. This
is in contradiction with the fact that the polynomials f1, . . . , fN+m are irreducible
and pairwise different. Hence we must have a non–constant function Ck0j0(x) for
some j0 ∈ {1, . . . , m} and some k0 ∈ {m + 1, . . . , n}. This completes the proof of
Theorem 1.
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