On the polynomial vector fields on \mathbb{S}^{2}

Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain (jllibre@mat.uab.cat)

Yulin Zhao
Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
(mcszyl@mail.sysu.edu.cn)
(MS received 25 January 2009; accepted 9 December 2010)

Let \mathcal{X} be a polynomial vector field of degree n on $M, M=\mathbb{R}^{m}$. The dynamics and the algebraic-geometric properties of the vector fields \mathcal{X} have been studied intensively, mainly for the case when $M=\mathbb{R}^{2}$, and especially when $n=2$. Several papers have been dedicated to the study of the homogeneous polynomial vector field of degree n on \mathbb{S}^{2}, mainly for the case where $n=2$ and $M=\mathbb{S}^{2}$. But there are very few results on the non-homogeneous polynomial vector fields of degree n on \mathbb{S}^{2}. This paper attempts to rectify this slightly.

1. Introduction and statement of the main results

Let $\mathbb{R}[x, y, z]$ be the ring of all polynomials in the variables x, y and z with real coefficients. The vector field

$$
\begin{equation*}
\mathcal{X}=P(x, y, z) \frac{\partial}{\partial x}+Q(x, y, z) \frac{\partial}{\partial y}+R(x, y, z) \frac{\partial}{\partial z} \tag{1.1}
\end{equation*}
$$

is called a polynomial vector field of degree n in \mathbb{R}^{3} if $P, Q, R \in \mathbb{R}[x, y, z]$ and $n=\max \{\operatorname{deg} P, \operatorname{deg} Q, \operatorname{deg} R\}$. For simplicity, sometimes we will write the vector field \mathcal{X} simply as $\mathcal{X}=(P, Q, R)$.

The vector field (1.1) is a homogeneous polynomial vector field \mathcal{X} of degree n in \mathbb{R}^{3} if P, Q and R are homogeneous polynomials of degree n.

Let $f \in \mathbb{R}[x, y, z]$. The algebraic surface $f(x, y, z)=0$ is an invariant algebraic surface of \mathcal{X} if there exists $K \in \mathbb{R}[x, y, z]$ such that

$$
\begin{equation*}
\mathcal{X} f=P(x, y, z) \frac{\partial f}{\partial x}+Q(x, y, z) \frac{\partial f}{\partial y}+R(x, y, z) \frac{\partial f}{\partial z}=K(x, y, z) f(x, y, z) \tag{1.2}
\end{equation*}
$$

As usual, \mathbb{S}^{2} denotes the two-dimensional sphere $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$. A polynomial vector field \mathcal{X} of degree n on \mathbb{S}^{2} is a polynomial vector field in \mathbb{R}^{3} of degree n such that restricting to \mathbb{S}^{2} defines a vector field on \mathbb{S}^{2}, i.e. it must satisfy the equality

$$
\begin{equation*}
x P(x, y, z)+y Q(x, y, z)+z R(x, y, z)=0 \quad \text { for all }(x, y, z) \in \mathbb{S}^{2} \tag{1.3}
\end{equation*}
$$

In particular, \mathcal{X} is called a quadratic vector field on \mathbb{S}^{2} if $n=2$.

