On the polynomial vector fields on \mathbb{S}^2

Jaume Llibre

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain (jllibre@mat.uab.cat)

Yulin Zhao

Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China (mcszyl@mail.sysu.edu.cn)

(MS received 25 January 2009; accepted 9 December 2010)

Let \mathcal{X} be a polynomial vector field of degree n on M, $M = \mathbb{R}^m$. The dynamics and the algebraic–geometric properties of the vector fields \mathcal{X} have been studied intensively, mainly for the case when $M = \mathbb{R}^2$, and especially when n = 2. Several papers have been dedicated to the study of the homogeneous polynomial vector field of degree n on \mathbb{S}^2 , mainly for the case where n = 2 and $M = \mathbb{S}^2$. But there are very few results on the non-homogeneous polynomial vector fields of degree n on \mathbb{S}^2 . This paper attempts to rectify this slightly.

1. Introduction and statement of the main results

Let $\mathbb{R}[x, y, z]$ be the ring of all polynomials in the variables x, y and z with real coefficients. The vector field

$$\mathcal{X} = P(x, y, z)\frac{\partial}{\partial x} + Q(x, y, z)\frac{\partial}{\partial y} + R(x, y, z)\frac{\partial}{\partial z}$$
(1.1)

is called a polynomial vector field of degree n in \mathbb{R}^3 if $P, Q, R \in \mathbb{R}[x, y, z]$ and $n = \max\{\deg P, \deg Q, \deg R\}$. For simplicity, sometimes we will write the vector field \mathcal{X} simply as $\mathcal{X} = (P, Q, R)$.

The vector field (1.1) is a homogeneous polynomial vector field \mathcal{X} of degree n in \mathbb{R}^3 if P, Q and R are homogeneous polynomials of degree n.

Let $f \in \mathbb{R}[x, y, z]$. The algebraic surface f(x, y, z) = 0 is an *invariant algebraic* surface of \mathcal{X} if there exists $K \in \mathbb{R}[x, y, z]$ such that

$$\mathcal{X}f = P(x, y, z)\frac{\partial f}{\partial x} + Q(x, y, z)\frac{\partial f}{\partial y} + R(x, y, z)\frac{\partial f}{\partial z} = K(x, y, z)f(x, y, z).$$
(1.2)

As usual, \mathbb{S}^2 denotes the two-dimensional sphere $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. A polynomial vector field \mathcal{X} of degree n on \mathbb{S}^2 is a polynomial vector field in \mathbb{R}^3 of degree n such that restricting to \mathbb{S}^2 defines a vector field on \mathbb{S}^2 , i.e. it must satisfy the equality

$$xP(x, y, z) + yQ(x, y, z) + zR(x, y, z) = 0$$
 for all $(x, y, z) \in \mathbb{S}^2$. (1.3)

In particular, \mathcal{X} is called a quadratic vector field on \mathbb{S}^2 if n = 2.

© 2011 The Royal Society of Edinburgh