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NON–EXISTENCE, EXISTENCE AND UNIQUENESS

OF LIMIT CYCLES FOR QUADRATIC POLYNOMIAL

DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND XIANG ZHANG2

Abstract. We provide sufficient conditions for the non–existence,
existence and uniqueness of limit cycles surrounding a focus of a
quadratic polynomial differential system in the plane.

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar dif-
ferential systems is to control the existence, non–existence and unique-
ness of limit cycles for a given class of polynomial differential systems.

Limit cycles of planar differential systems were defined by Poincaré
[15], and started to be studied intensively at the end of the 1920s by
van der Pol [16], Liénard [11] and Andronov [1].

It is well known that if a quadratic polynomial differential system,
or simply a quadratic system has one limit cycle this must surround
a focus of the system (see for instance Proposition 8.13 of [7]), and
according with Bautin [2] such a system can be written in the form

(1)
ẋ = λ1x− y − λ3x

2 + (2λ2 + λ5)xy + λ6y
2,

ẏ = x+ λ1y + λ2x
2 + (2λ3 + λ4)xy − λ2y

2.

In order to state our results we wrote the quadratic system (1) in
polar coordinates (r, θ), defined by x = r cos θ, y = r sin θ, and we get

(2)
ṙ = λ1r + fr2,

θ̇ = 1 + gr,

where

f = f(θ) = −λ3 cos
3 θ + (3λ2 + λ5) cos

2 θ sin θ+
(2λ3 + λ4 + λ6) cos θ sin

2 θ − λ2 sin
3 θ,

g = g(θ) = λ2 cos
3 θ + (3λ3 + λ4) cos

2 θ sin θ−
(3λ2 + λ5) cos θ sin

2 θ − λ6 sin
3 θ,
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are homogeneous polynomials of degree 3 in the variables cos θ and
sin θ. In the region

(3) C = {(x, y) = (r cos θ, r sin θ) : r ≥ 0 and 1 + gr > 0}
the differential system (2) is equivalent to the differential equation

(4)
dr

dθ
=

λ1r + fr2

1 + gr
.

We note that C is a simply connected region containing the origin of
coordinates, having as boundary the points that in polar coordinates
(r, θ) satisfy the equality r = −1/g, i.e. the points of the curve θ̇ = 0.

It is known that the periodic orbits surrounding the origin of system
(2) do not intersect the curve θ̇ = 1+ gr = 0 (see the Appendix of [4]).
Therefore, these periodic orbits are contained in the region C, and
consequently also they are periodic orbits of equation (4). Moreover
these periodic orbits can be studied doing the change of variables

ρ =
r

1 + g(θ)r
,

due to Cherkas [5]. In the new variable ρ the differential equation (4)
writes

(5)
dρ

dθ
= g(λ1g − f)ρ3 + (f − 2λ1g − g′)ρ2 + λ1ρ.

Quadratic systems have been investigated intensively, and there are
more than one thousand of articles published on themselves, and many
of them on their limit cycles, see for instance [17, 20]. But in this work
we are interested in the results on the limit cycles of quadratic systems
which have been obtained using the trigonometric polynomials f and g
which appear in the differential equation (4). As far as we know those
results are the following:

(I) If g(λ1g− f) ≥ 0 for all θ, then the quadratic system (1) has at
most one limit cycle surrounding the origin (see statement (b)
of Theorem 1.1 of [3]).

(II) If f − 2λ1g − g′ = 0, then the quadratic system (1) has at
most one limit cycle surrounding the origin (see statement (b)
of Theorem C of [9]).

We must mention that results (I) and (II) where proved for poly-
nomial differential systems more general than the quadratic ones, and
that the versions presented here are their restriction to quadratic sys-
tems. As we shall see the result (I) continues be optimal for quadratic
systems, in the sense that as we shall prove there are quadratic systems
satisfying their assumptions and having either zero, or one limit cycles
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surrounding the origin of system (1). But the result (II) is not opti-
mal for quadratic systems, because we shall prove that all quadratic
systems under the assumptions of (II) have no limit cycles.

Now we state our results on the limit cycles of the quadratic sys-
tems using the trigonometric polynomials f and g. We also include for
completeness the known result (I).

Theorem 1. The quadratic system (1) has no limit cycles surrounding

the origin if one of the following conditions hold:

(i) if f = 0;
(ii) if f − λ1g = 0;
(iii) if g = 0;
(iv) if f − 2λ1g − g′ = 0;
(v) if λ1g − 9f = 0;
(vi) if 9λ1g − f = 0;
(vii) if (λ1g − f)(λ1g − 9f) ≤ 0 for all θ.

The quadratic system (1) has at most one limit cycle surrounding the

origin if one of the following conditions hold:

(viii) if (λ1g−f)(9λ1g−f) ≤ 0 for all θ and (λ1g−f)(9λ1g−f) 6≡ 0;
(ix) if g(λ1g − f) ≥ 0 for all θ and g(λ1g − f) 6≡ 0.

Theorem 1 is proved in section 3.

We remark that condition (viii) cannot be obtained from (vii) by
taking 9λ1 instead of λ1, because doing this to system (21), for the new
system with 9λ1 instead of λ1 we have

(λ1g − f)(9λ1g − f) =
11(9λ1 cos θ − 5 sin θ)2

81λ2

1

≥ 0,

whereas

(λ1g − f)(λ1g − 9f) = −(9λ1 cos θ − 5 sin θ)2

81λ2

1

≤ 0.

It follows easily from Theorem 1 the next result.

Corollary 2. If the inequalities of statements (viii) and (ix) are strict,
then there exists an open set in the space of twelve coefficients of the

quadratic systems where the corresponding quadratic systems have at

most one limit cycle.

In the next result we show that there are quadratic systems satisfying
all the statements of Theorem 1 with except statement (viii).

Proposition 3. We provide examples of quadratic systems satisfying

the assumptions of all statements of Theorem 1, and we present exam-

ples of quadratic systems satisfying the assumption of statement (viii)
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with one limit cycle, and the assumption of statement (ix) with zero

and one limit cycles.

Proposition 3 is proved in section 4.

It remains the open question to know if there are quadratic systems
satisfying the assumption of statement (viii) without limit cycles.

Remark 4. In the appendix we present 14 classes of quadratic systems

for which it is known that at most have one limit cycle surrounding

the origin. We have pass these classes to the Bautin’s normal form

and we have checked that those quadratic systems do not satisfy the

conditions (viii) and (ix) of Theorem 1. Consequently, the results on

the uniqueness of limit cycles provided for conditions (viii) and (ix) of
Theorem 1 look new.

2. Preliminary results

In this section we recall some basic results that we shall need for
proving our Theorem 1.

The next two results correspond to Theorems 2 and 3 of Lloyd [13].

Lemma 5. We have a differential system in polar coordinates

(6)
ṙ = F (r, θ),

θ̇ = G(r, θ),

defined in a simply connected open set U containing the origin, where

F and G are C1 2π–periodic functions such that F (0, θ) = 0 for all

θ, and G(r, θ) > 0 in U . Then, in U the differential system (6) is

equivalent to the differential equation

(7)
dr

dθ
=

F (r, θ)

G(r, θ)
= S(r, θ).

Therefore, if

(8)
∂S

∂r
6≡ 0,

and

(9) either
∂S

∂r
≤ 0, or

∂S

∂r
≥ 0 in U ,

the differential system (6) has no limit cycles in U .

Remark 6. We note that in [13] the inequalities (9) appear without

the equal, but checking the proof of Theorem 2 of [13] we see that it also
works under the conditions (8) and (9).
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Lemma 7. Consider the differential system (6) defined in an annular

region A which encircles the origin and where G(r, θ) > 0. Then, in A
the differential system (6) is equivalent to the differential equation (7).
If (8) and (9) hold in A, then the differential system (6) has at most

1 limit cycle in A.

The remark 6 applies to Lemma 7 but now using the proof of Theo-
rem 3 of [13].

Lemma 8. Under the assumptions of Lemma 7 if ∂3S/∂r3 ≥ 0 in A,

then the differential system (6) has at most 3 limit cycles in A.

Again Remark 6 applies to Lemma 8 but now using the proof of
Theorem 8 of [13].

The following two results are well known, for a proof see for instance
Gasull [8]. Another proof of the next result can be found in Theorem
1 of Lins Neto [12].

Lemma 9. The Riccati differential equation

dr

dθ
= a(θ)r2 + b(θ)r + c(θ),

where a(θ), b(θ) and c(θ) are continuous 2π–periodic functions, has at

most two periodic solutions.

The next result is Theorem 2 of Lins Neto [12] when a(θ) > 0, see
also Pliss [14]. When a(θ) ≥ 0 but a(θ) 6≡ 0 it is proved in Theorem 8
of [6].

Lemma 10. The Abel differential equation

dr

dθ
= a(θ)r3 + b(θ)r2 + c(θ)r + d(θ),

where a(θ), b(θ), c(θ) and d(θ) are continuous 2π–periodic functions,

and a(θ) ≥ 0 for all θ but a(θ) 6≡ 0, has at most three periodic solutions.

The next result is due to Bautin [2]

Lemma 11. The Liapunov constants of the quadratic differential sys-

tem (1) when λ1 = 0 are

V3 = −π

4
λ5(λ3 − λ6),

V5 =
π

24
λ2λ4(λ3 − λ6)(λ4 + 5(λ3 − λ6)),

V7 = −5π

32
λ2λ4(λ3 − λ6)

2 (λ6(λ3 − 2λ6)− λ2

2
) ,
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where the expression of V5 is given when V3 = 0, and the expression of

V7 is given when V3 = V5 = 0. Moreover, the quadratic system (1) has
a center at the origin if and only if λ1 = V3 = V5 = V7 = 0.

3. Proof of Theorem 1

We prove Theorem 1 statement by statement.

Proof of statement (i) of Theorem 1. Since f = 0 then dr/dθ does not
change sign. If λ1 6= 0 the solutions r(θ) of (4) increases or decreases,
so these solutions cannot be periodic in the region C, and consequently
the quadratic system (1) has no limit cycles surrounding the origin.

If λ1 = 0 then dr/dθ ≡ 0 and all the solutions in the region C are
periodic and circular (except the equilibrium point at the origin), so
the system has no isolated periodic orbits surrounding the origin, i.e.
no limit cycles surrounding the origin. So statement (i) is proved. �

Proof of statement (ii) of Theorem 1. Since f − λ1g = 0 we have that
dr/dθ = λ1r. Now the proof ends following the same arguments than
in the proof of statement (i). �

Proof of statement (iii) of Theorem 1. If g = 0 then the differential
equation (4) becomes dr/dθ = λ1r+ fr2, i.e. it is a Riccati differential
equation. By Lemma 9 it has at most two periodic solutions.

Since the differential equation (4) is invariant under the changes of
variables (r, θ) → (−r, θ + π), it follows that if r(θ) is a limit cycle
of equation (4), then −r(θ + π) is another limit cycle. Note that the
differential equation (4) is defined on the annular region A = {(r, θ) :
1 + gr > 0} of the cylinder {(r, θ) ∈ R × S

1}. Moreover, since r = 0
always is a periodic solution of equation (4), we get that the differential
equation (4) cannot have a periodic solution in the region of the half–
cylinder r > 0 where it is defined, because then it would have at least
three periodic solutions in A, and we have proved that at most it has
two periodic solutions. Consequently the quadratic system (1) has
no limit cycles surrounding the origin. This completes the proof of
statement (iii). �

Proof of statement (iv) of Theorem 1. Easy computations show that there
are two classes of quadratic systems satisfying f−2λ1g−g′ = 0. These
are

(10)
ẋ = −y +

λ4

4
x2 − 2λ2xy −

λ4

4
y2,

ẏ = x+ λ2x
2 +

λ4

2
xy − λ2y

2,
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and

(11)
ẋ = λ1x− y + 2λ1λ2x

2 − 2λ2xy,

ẏ = x+ λ1y + λ2x
2 + 2λ1λ2xy − λ2y

2.

Then using Lemma 11 it follows that all the Liapunov constants of
systems (10) and (11) with λ1 = 0 are zero. So these systems have a
center at the origin, and then it is known that there is no limit cycles
surrounding the origin.

Now it remains to prove that system (11) with λ1 6= 0 has no limit
cycles. Indeed, this system has additionally to the focus at the origin a
second equilibrium point (x, y) = (−1/λ1,−λ1/λ2). We translate this
equilibrium at the origin doing the change of variables x = X − 1/λ1

and y = Y − λ1/λ2, obtaining the system

(12)
Ẋ = −λ1X + Y + 2λ1λ2X

2 − 2XY λ2,

Ẏ = −(1 + 2λ2

1
)X + λ1Y + λ2X

2 + 2λ1λ2XY − λ2Y
2.

The eigenvalues at the origin of system (12) are ±
√

1 + λ2

1
i. We

write the linear part of system (12) into its real Jordan normal form
doing the change of variables

(

X
Y

)

=

(

0 1
√

1 + λ2

1
λ1

)(

u
v

)

.

In the variables (u, v) system (12) becomes

u̇ = −
√

λ2

1
+ 1 v −

√

λ2

1
+ 1u2 + 2λ1uv +

√

λ2

1
+ 1 v2,

v̇ =
√

λ2

1
+ 1 (u− 2uv) .

Now if we compute the Liapunov constants for this system, which is
in the normal form of Bautin, using Lemma 11 we get that the three
are zero, so this system at the origin has a center. Since quadratic
systems having a center have no limit cycles, this completes the proof
of statement (iv). �

Proof of statement (v) of Theorem 1. Again easy computations show
that there are two classes of quadratic systems satisfying λ1g−9f = 0.
These are

(13)
ẋ = −y + y2,

ẏ = x− xy,



8 J. LLIBRE AND X. ZHANG

Figure 1. Phase portrait of the quadratic system (22) with
λ1 = 1/10.

and

(14)

ẋ = λ1x− y +
λ1

9
x2 − 2yx+

9

λ1

y2,

ẏ = x+ λ1y + x2 +
λ2

1
− 81

9λ1

xy − y2,

with λ1 6= 0.

By Lemma 11 the quadratic system (13) has a center at the origin,
and consequently this system has no limit cycles.

If we write system (14) in polar coordinates and we take θ as new
independent variable we obtain the differential equation

(15)
dr

dθ
=

λ1r(9λ1 + λ1r cos θ − 9 r sin θ)

9(λ1 + λ1r cos θ − 9 r sin θ)
= S(r, θ),

defined in the simply connected region C. Since

∂S

∂r
=

λ1

9

(

8λ2

1

(λ1 + λ1r cos θ − 9 r sin θ)2
+ 1

)

is ≥ 0 if λ1 > 0, or ≤ 0 if λ1 < 0, we have that ∂S/∂r satisfies (8) and
(9) in the region C, and consequently, we can apply Lemma 5, to the
differential equation (15), and the proof of statement (v) follows. �

Proof of statement (vi) of Theorem 1. After easy computations the qua-
dratic systems satisfying 9λ1g−f = 0 are system (13) and the systems

(16)

ẋ = λ1x− y + 9λ1x
2 − 2xy +

1

9λ1

y2,

ẏ = x+ λ1y + x2 +
81λ2

1
− 1

9λ1

xy − y2,
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with λ1 6= 0. Since we have proved that system (13) has no limit cycles,
it only remains to prove that system (16) has no limit cycles.

Writing system (16) in polar coordinates and taking θ as the new
independent variable we have the differential equation

(17)
dr

dθ
=

λ1r + r2(9λ1 cos θ − sin θ)

1 + r(cos θ − sin θ/(9λ1))
= S(θ, r).

Then
∂3S

∂r3
= − 3888λ3

1
(9λ1 cos θ − sin θ)2

(9λ1 + r(9λ1 cos θ − sin θ))4
.

We can assume that λ1 < 0, otherwise we reverse the sign of the time in
the differential system (16). Therefore we have that ∂3S/∂r3 ≥ 0, and
the equality holds at only finitely many points. Taking into account
C, which is defined in (3), we know that equation (17) is defined on an
annular region, saying A, of the cylinder {(θ, r) ∈ S

1 × R}, see Fig. 2.

r > 0

r = 0

r < 0

θ = 0

θ + π

r(θ)

−r(θ + π)

Figure 2. Illustration of the three periodic orbits on the cylinder.

Taking θ = 0 as a Poincaré section of equation (17) in A, and r0 ∈ R

as an initial point of equation (17) at θ = 0. Let H(r0) = r(2π, r0) −
r0 be the displacement function, with r(θ, r0) being the solution of
equation (17) such that r(0, r0) = r0 for the point (0, r0) ∈ A. Since
∂3S/∂r3 ≥ 0 and it is not identically zero, from the proof of Theorem 8
of [13] we have that H ′′′(r0) > 0 for all r0 where the map H is defined.
The number of zeros of H(r0) taking into account their multiplicities
cannot be larger than 3, otherwise H ′′′(r0) would have some zero, a
contradiction. So equation (17) has at most three different zeros with
multiplicity one.

We saw in the proof of statement (iii) that if r(θ) is a solution
of the differential equation (4), then −r(θ + π) is another solution.
Moreover, since r = 0 always is a periodic solution of equation (17)
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(see Fig. 2), we get that when equation (17) has three simple zeros,
it has a unique positive zero. Consequently, the quadratic polynomial
differential system (16) has at most one limit cycle in r > 0. Moreover,
if the limit cycle exists it is hyperbolic, because then the zeros of H(x)
are simple, for a definition of a hyperbolic limit cycle see for instance
the Chapter 8 of [7].

Now we shall prove that the quadratic systems (16) have no limit
cycles. Indeed, systems (16) with λ1 6= 0 have a unique finite equilib-
rium, a hyperbolic focus; and have a unique pair of infinite equilibria
a semi–hyperbolic saddle–node, having only one separatrix γ outside
the infinity, which by the Poincaré–Bendixson Theorem must go to
surround the unstable focus, see for more details on the Poincaré–
Bendixson Theorem section 1.7 of [7]. Moreover using Theorem 2.19 of
[7] it follows that if the origin is a stable (respectively unstable) focus,
then the separatrix γ is unstable (respectively stable). Therefore, since
system (16) has at most one limit cycle, if such a limit cycle exists
it must be semistable, in contradiction with the fact that if the limit
cycle exists, it must be hyperbolic, which we proved in the previous
paragraph. This completes the proof of statement (vi). �

Proof of statement (vii) of Theorem 1. Doing the change of variables
R =

√
r in the region C, the differential equation (4) becomes

(18)
dR

dθ
=

λ1R + fR3

2(1 + gR2)
= S(R, θ).

Clearly the image of the simply connected region C under the map
r → √

r = R is another simply connected region S containing the
origin R = 0.

We have
∂S

∂R
=

λ1 + (3f − λ1g)R
2 + fgR4

2(1 + gR2)2
.

Then, clearly if (3f−λ1g)
2−4λ1fg = (λ1g−f)(λ1g−9f) ≤ 0, we have

that ∂S/∂R satisfies (8) and (9) in the region S, and consequently, we
can apply Lemma 5, to the differential equation (18), and the proof of
statement (vii) follows. �

Proof of statement (viii) of Theorem 1. Doing the change of variables
R = 1/

√
r in the region C, the differential equation (4) becomes

(19)
dR

dθ
= −λ1R

3 + fR

2(g +R2)
= S(R, θ).

Now the image of the region C by the map r → 1/
√
r = R is an annular

region A, and one of the boundaries of this annulus is the infinity.
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We get
∂S

∂R
= −fg − (f − 3λ1g)R

2 + λ1R
4

2(g +R2)2
.

Then, clearly if (f−3λ1g)
2−4λ1fg = (λ1g−f)(9λ1g−f) ≤ 0, we have

that ∂S/∂R satisfies conditions (8) and (9) in the annular region A,
and consequently we can apply Lemma 7, to the differential equation
(19), and this completes the proof of statement (viii). �

Proof of statement (ix) of Theorem 1. Note that g(λ1g − f) is the co-
efficient of ρ3 in the Abel differential equation (5).

Assume that g(λ1g − f) ≥ 0 and g(λ1g − f) 6≡ 0. Therefore, by
Lemma 10 the Abel differential equation (5) has at most three periodic
solutions, and consequently the differential equation (4) has at most
three periodic solutions.

We saw in the proof of statement (iii) that if r(θ) is a solution of the
differential equation (4), then −r(θ+π) is another solution. Moreover,
since r = 0 always is a periodic solution of equation (4), we get that
the differential equation (4) has at most one periodic solution in the
region of the half–cylinder r > 0 where it is defined. Consequently the
quadratic system (1) has at most one limit cycle. This completes the
proof of statement (ix). �

4. Proof of Proposition 3

We prove Proposition 3 following the statements of Theorem 1.

Examples of statement (i). It is easy to compute that all quadratic
systems (1) with f = 0 are

(20)
ẋ = λ1x− y − λ4y

2,
ẏ = x+ λ1y + λ4xy.

Examples of statement (ii). Again it is easy to verify that all quadratic
systems (1) with f−λ1g = 0 are the systems (20) and also the systems

ẋ = λ1x− y + λ1λ2x
2 − 2λ2xy +

λ2

λ1

y2,

ẏ = x+ yλ1 + λ2x
2 +

(λ1 − 1)(λ1 + 1)λ2

λ1

xy − λ2y
2.

Examples of statement (iii). Quadratic systems (1) having g = 0 are

ẋ = λ1x− y − λ3x
2,

ẏ = x+ λ1y − λ3xy.
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Examples of statements (iv), (v) and (vi). These examples are given
in the proofs of the corresponding statements (iv), (v) and (vi) of
Theorem 1.

Examples of statement (vii). For the quadratic systems

(21)

ẋ = λ1x− y +
1

4λ2

1

(λ1x− 5y)2,

ẏ = x+ λ1y +
1

4λ2

1

(λ1x− 5y)(5x+ λ1y),

depending on the parameters λ1. We have that

(λ1g − f)(λ1g − 9f) = −(λ1 cos θ − 5 sin θ)2

λ2

1

≤ 0.

Therefore there are quadratic systems satisfying the assumptions of
statement (vii).

Now the proof that quadratic systems (21) have no limit cycles is
identical to the proof showing that systems (16) have no limit cycles.

Examples of statement (viii). We consider the family of quadratic
systems

(22)

ẋ = λ1x− y +
1

5λ1

(5λ1x− y)2,

ẏ = x+ λ1y +
1

5λ1

(5λ1x− y)(x+ 5λ1y),

depending on the parameters λ1. We have that

(λ1g − f)(9λ1g − f) = −16

25
(sin θ − 5λ1 cos θ)

2 ≤ 0.

Hence this family of quadratic systems satisfy the hypotheses of state-
ment (viii).

The quadratic system (22) with λ1 6= 0 has a unique finite equilib-
rium, a hyperbolic focus; and has a unique pair of infinite equilibria
a semi–hyperbolic saddle–node, having only one separatrix γ outside
the infinity, which by the Poincaré–Bendixson Theorem must go to sur-
round the unstable focus. Moreover using Theorem 2.19 of [7] it follows
if the origin is a stable (respectively unstable) focus, then the separatrix
γ is stable (respectively unstable). So again by the Poincaré–Bendixson
Theorem at least one limit cycle surrounds such unstable focus local-
ized at the origin of coordinates, see Figure 2. Then, by statement
(viii) of Theorem 1 this limit cycle is unique.
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In short, we have proved that there are quadratic systems satisfying
the assumptions of statement (viii) of Theorem 1 having one limit cycle
surrounding the origin.

Examples of statement (ix). For the quadratic systems

(23)
ẋ = λ1x− y − bx2 − εxy,

ẏ = x+ λ1y − bxy,

depending of three parameters λ1, ε and b we have that

g(λ1g − f) = εb cos2 θ sin2 θ + ε2 cos2 θ sin3 θ(cos θ + λ1 sin θ).

So if the parameter ε is sufficiently small and εb > 0 we have that
g(λ1g− f) ≥ 0, and of course g(λ1g− f) 6≡ 0. So the quadratic system
(23) satisfies the assumption of statement (viii) of Theorem 1, hence
it has at most one limit cycle.

The eigenvalues at the origin of system (23) are λ1 ± i. Therefore
when λ1 = 0 if there is a Liapunov constant which is not zero, then
a Hopf bifurcation of an infinitesimal periodic orbit takes place at the
origin of coordinates, see for more details about Hopf bifurcations [10].
The Liapunov constants for the quadratic differential systems (1) with
λ1 = 0 were computed by Bautin [2] and the first one is

V3 = −π

4
λ5(λ3 − λ6),

see Lemma 11. Then, for our system (23) when λ1 = 0, we have
V3 = εbπ/4 > 0 because εb > 0. Hence there are systems (23) with
εb > 0 and ε sufficiently small such that in a neighborhood of λ1 = 0
exhibit zero limit cycles or one limit cycle.

In short we have proved that there are quadratic systems satisfying
the conditions of statement (ix) of Theorem 1 exhibiting either zero,
or one limit cycle surrounding the origin.

5. Appendix

In the following we provide a list with 14 classes of quadratic differ-
ential systems for which are known that at most have one limit cycle
surrounding the origin. The first 12 come from the section 9 of the Ye’s
book [21], the last two classes come from the articles of Zhang [22], and
of Sun [19], respectively.

(i) The quadratic systems in the Ye’s normal form (I):

ẋ = −y + δx+ lx2 + xy + ny2, ẏ = x.
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(ii) The quadratic systems in the Ye’s normal form (III)
n=0:

ẋ = −y + lx2 +mxy, ẏ = x+ ax2 + bxy,

having a weak focus of order 2 at the origin, i.e. there satisfy
the conditions:

ml − a(b+ 2l) = 0,

ma(5a−m)(bl2 − a2(b+ 2l)) 6= 0.

(iii) The quadratic systems in the Ye’s normal form (III)
n 6=0:

ẋ = −y + lx2 +mxy + y2, ẏ = x+ ax2 + bxy,

having a weak focus of order 2 at the origin, i.e. there satisfy
the conditions:

m(l + 1)− a(b+ 2l) = 0,

ma(5a−m)((b+ 1)(l + 1)2 − a2(b+ 2l + 1)) 6= 0.

(iv) The quadratic systems in the Ye’s normal form (III)
a=0:

ẋ = −y + δx+ lx2 +mxy + ny2, ẏ = x+ bxy.

(v) A special quadratic systems in the Ye’s normal form (III):

ẋ = −y + δx+ ny2, ẏ = x+ ax2 − xy,

with 0 < n < 1.

(vi) Quadratic systems having a degenerate finite singularity can be
written in the Ye’s normal form (III):

ẋ = −y + δx+ lx2 − δxy + y2,

ẏ = x+ ax2 − xy, |δ| < 2,

which has (0, 1) as a degenerate singularity (i.e. the lineariza-
tion of the system at (0, 1) has two zero eigenvalues and it is
not zero), and satisfying aδ(2l − 1) 6= 0 (otherwise, the origin
is a center).

(vii) Quadratic systems having a degenerate singularity at infinity
can be written in the Ye’s normal form (III):

ẋ = −y + δx+ lx2, ẏ = x+ ax2 + bxy, |δ| < 2.

(viii) A quadratic system in the Ye’s normal form (III):

ẋ = −y + δx(y − 1) + lx2 + ny2, ẏ = x+ ax2 − xy,

with 1/2 ≤ n < 1 (otherwise it is unknown the existence or not
of limit cycles).
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(ix) A quadratic system in the Ye’s normal form (III):

ẋ = −y + δx(y − 1) + lx2 + y2, ẏ = x+ ax2 + bxy,

with δ 6= 0, a > 0, b+ 1 < 0.

(x) Quadratic systems having a finite singularity of multiplicity ≥ 3
can be written in the Ye’s normal form (III):

ẋ = −y + δx+ lx2 − (a+ δ)xy + y2, ẏ = x+ ax2 − xy,

which have (0, 1) as a singularity of multiple 3, and satisfy δ >
and 0 < aδ/l < 1 (otherwise the systems have no limit cycles).

(xi) Quadratic systems having a singularity of multiplicity ≥ 3 at
infinity can be written in the Ye’s normal form (III):

ẋ = −y + δx+ lx2 +mxy + ny2, ẏ = x+ bx2 + cxy,

with coefficients satisfying
– either b = l 6= 0, m = c;
– or l = 0, m = bδ, b 6= 0.

(xii) The quadratic systems in the Ye’s normal form (III):

ẋ = −y + δx+ (m− bδ)x2 + bxy,

ẏ = x+ (n+ 2δm− bδ2)x2 + (bδ −m)xy,

with coefficients satisfying either b = 0; or m2 + bn = 0.

The quadratic systems

ẋ = −y + δx+ lx2 + ny2, ẏ = x+ ax2 − xy,

have at most one limit cycle under the conditions

(xiii) either a < 0, l > 1/2, 0 < n < 1 and δ < 0;

(xiv) or 0 < n ≤ 1/2 (1/2 ≤ n < 1), −na2 < l < 1/2, aδ < 0 (> 0).

There are some other results on the uniqueness of limit cycles of
quadratic systems that we do not list here.
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23 (1928), 901–912.

[12] A. Lins Neto, On the number of solutions of the equation dx/dt =
∑n

j=0
aj(t)x

j , 0 ≤ t ≤ 1, for which x(0) = x(1), Invent. Math. 59 (1980),
67–76.

[13] N.G. Lloyd, A note on the number of limit cycles in certain two–dimensional
systems, J. London Math. Soc. 20 (1979), 277–286.

[14] V.A. Pliss, Non–local problems of the Theory of Oscillations, Academic Press,
New York, 1966.
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