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ON THE LIMIT CYCLES OF LINEAR DIFFERENTIAL
SYSTEMS WITH HOMOGENEOUS NONLINEARITIES

JAUME LLIBRE1 AND XIANG ZHANG2

Abstract. We consider the class of polynomial differential sys-
tems of the form ẋ = λx − y + Pn(x, y), ẏ = x + λy + Qn(x, y),
where Pn and Qn are homogeneous polynomials of degree n. For
this class of differential systems we summarize the known results
for the existence of limit cycles, and we provide new results for
their non–existence and existence.

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar dif-
ferential systems is to control the existence, non–existence or unique-
ness of limit cycles for a given class of polynomial differential systems.

Limit cycles of planar differential systems were defined by Poincaré
[13] and started to be studied intensively at the end of the 1920s by
van der Pol [14], Liénard [7] and Andronov [1].

In this work we study the real planar polynomial differential systems
of the form

(1)
ẋ = λx− y + Pn(x, y),
ẏ = x+ λy ++Qn(x, y),

where Pn and Qn are homogeneous polynomials of degree n.

In order to be more precise we need to introduce some notations
and basic results. Then, in polar coordinates (r, θ) defined by x =
r cos θ, y = r sin θ, system (1) writes as

(2)
ṙ = λr + f(θ)rn,

θ̇ = 1 + g(θ)rn−1,

where

f(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),
g(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ),
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are homogeneous polynomials of degree n+1 in the variables cos θ and
sin θ. In the region

C = {(r, θ) : 1 + g(θ)rn−1 > 0}

the differential system (2) is equivalent to the differential equation

(3)
dr

dθ
=

λr + f(θ)rn

1 + g(θ)rn−1
.

It is known that the periodic orbits surrounding the origin of system (2)

do not intersect the curve θ̇ = 0 (see the Appendix of [3]). Therefore,
these periodic orbits are contained in the region C, and consequently
also they are periodic orbits of equation (3). Moreover these periodic
orbits can be studied doing the change of variables

ρ =
rn−1

1 + g(θ)rn−1
,

due to Cherkas [4], which in fact goes back to Liouville [9]. In the new
variable ρ the differential equation (3) writes

(4)
dρ

dθ
= (n− 1)g(λg− f)ρ3 + ((n− 1)(f − 2λg)− g′)ρ2 + (n− 1)λρ.

There are previous results on the existence of limit cycles for the
polynomial differential systems (1), using the differential equations (3)
or (4), that we summarize in what follows.

(i) If the trigonometric polynomial f − λg ̸≡ 0 does not change
sign, then system (1) has at most one limit cycle, and when it
exists surrounds the origin (see Theorem A of [5]).

(ii) If the trigonometric polynomial (n− 1)g(λg − f) ̸≡ 0 does not
change sign, then equation (1) has at most one limit cycle in
the region r > 0 if n is even, and at most two limit cycles in
the region r > 0 if n is odd, and when they exist surround the
origin (see statement (b) of Theorem 1.1 of [2]).

(iii) If the trigonometric polynomial (n− 1)(f − 2λg)− g′ ̸≡ 0 does
not change sign, then equation (1) has at most two limit cycles,
and when they exist surround the origin (see statement (a) of
Theorem C of [6]).

(iv) If either the trigonometric polynomial (n − 1)g(λg − f) ≡ 0
or (n − 1)(f − 2λg) − g′ ≡ 0, then equation (1) has at most
one limit cycle, and when it exists surrounds the origin (see
statement (b) of Theorem C of [6]).
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We remark that all the previous results only provide information on
the limit cycles surrounding the origin of the polynomial differential
system (1).

We must mention that the first results that finally ended in the result
(ii) were given by Pliss [12] and Lins Neto [8].

All results (i)–(iv) are about existence of limit cycles for the poly-
nomial differential systems (1). Now we provide results on the non–
existence of limit cycles for systems (1) and a new result on the exis-
tence and uniqueness.

Theorem 1. The polynomial differential system (1) with n ≥ 2 has
no limit cycles surrounding the origin if one of the following condition
hold:

(i) if f = 0;
(ii) if f − λg = 0;
(iii) if g = 0;
(iv) if (2n− 1)2f − λ(2n− 3)2g = 0;
(v) if (f − λg)(n2f − λ(n− 2)2g) ≤ 0 for all θ;
(vi) if (f − λg)((2n− 1)2f − λ(2n− 3)2g) ≤ 0 for all θ.

The polynomial differential system (1) has at most one limit cycle sur-
rounding the origin if the following conditions holds:

(vii) if (f − λg)((2n− 3)2f − λ(2n− 1)2g) ≤ 0 for all θ.

Theorem 1 is proved in section 3.

In some sense Theorem 1 is an extension to any positive integer n,
of a similar result for n = 2, see Theorem 1 of [10].

2. Preliminary results

In this section we recall some basic results that we shall need for
proving our Theorem 1.

The next two results correspond to Theorems 2 and 3 of Lloyd [11].

Lemma 2. We have a differential system in polar coordinates

(5)
ṙ = F (r, θ),

θ̇ = G(r, θ),

defined in a simply connected open set U containing the origin, where
F and G are C1 2π–periodic functions such that F (0, θ) = 0 for all
θ, and G(r, θ) > 0 in U . Then, in U the differential system (5) is
equivalent to the differential equation

(6)
dr

dθ
=

F (r, θ)

G(r, θ)
= S(r, θ).
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Therefore, if

(7)
∂S

∂r
̸≡ 0,

and

(8) either
∂S

∂r
≤ 0, or

∂S

∂r
≥ 0 in U ,

the differential system (5) has no limit cycles in U .

Remark 3. We note that in [11] the inequalities (8) appear without
the equal, but checking the proof of Theorem 2 of [11] we see that it also
works under the conditions (7) and (8).

Lemma 4. Consider the differential system (5) defined in an annular
region A which encircles the origin and where G(r, θ) > 0. Then, in A
the differential system (5) is equivalent to the differential equation (6).
If (7) and (8) hold in A, then the differential system (5) has at most
1 limit cycle in A.

The remark 3 applies to Lemma 4 but now using the proof of Theo-
rem 3 of [11].

Lemma 5. Under the assumptions of Lemma 4 if ∂3S/∂r3 ≥ 0 in A,
then the differential system (5) has at most 3 limit cycles in A.

Again Remark 3 applies to Lemma 5 but now using the proof of
Theorem 8 of [11].

3. Proof of Theorem 1

We prove Theorem 1 statement by statement. The proof of the
first two statements of Theorem 1 are essentially the same that in the
particular case that n = 2 done in [10], but since are shorter and easier
we provide them here for completeness.

Proof of statement (i) of Theorem 1. Since f = 0 then dr/dθ does not
change sign. If λ ̸= 0 the solutions r(θ) of (3) increases or decreases, so
these solutions cannot be periodic in the region C, and consequently
the polynomial differential system (1) has no limit cycles surrounding
the origin.

If λ = 0 then dr/dθ ≡ 0 and all the solutions in the region C are
periodic and circular (except the equilibrium point at the origin), so
the system has no isolated periodic orbits surrounding the origin, i.e.
no limit cycles surrounding the origin. So statement (i) is proved. �
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Proof of statement (ii) of Theorem 1. Since f − λg = 0 we have that
dr/dθ = λr. Now the proof ends following the same arguments than
in the proof of statement (i). �
Proof of statement (iii) of Theorem 1. If g = 0 then the differential
equation (3) becomes dr/dθ = λr + frn. Its general solution r(θ)
satisfying that r(0) = r0 > 0 is

r(θ) =

(
e(1−n)θλr−n

0

(
r0 + (1− n)

(∫ θ

0

e(n−1)sλf(s) ds

)
rn0

)) 1
1−n

.

There is at most a unique value of r0 > 0 such that r(2π) = r0 if exists,
namely

r0 =

(
e2(1−n)πλ(n− 1)

∫ 2π

0
e(n−1)sλf(s) ds

e2(1−n)πλ − 1

) 1
1−n

.

This completes the proof of statement (iii). �
Proof of statement (iv) of Theorem 1. From (2n−1)2f−λ(2n−3)2g =
0 we have f = λ(2n−3)2g/(2n−1)2. Substituting f into the differential
equation (3) we get

(9)
dr

dθ
= λ

r + (2n− 3)2grn/(2n− 1)2

1 + grn−1
= S(r, θ).

defined in the simply connected region C.

We have

∂S

∂r
=

λ ((2n− 3)2g2r2n−2 + 2grn−1 + (2n− 1)2)

(2n− 1)2(1 + grn−1)2
.

Then, since 4g2 − 4(2n − 1)2(2n − 3)2g2 = −g2(n − 1)2(1 + 2n(n −
2)) ≤ 0, we have that ∂S/∂R satisfies (7) and (8) in the region S, and
consequently, we can apply Lemma 2, to the differential equation (9),
and the proof of statement (iv) is done. �
Proof of statement (v) of Theorem 1. Consider the differential equation
(3)

(10)
dr

dθ
=

λr + frn

1 + grn−1
= S(r, θ).

defined in the simply connected region C.

We have

∂S

∂r
=

fgr2n−2 + (nf − (n− 2)λg)rn−1 + λ

(1 + grn−1)2
.
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Then, if (nf− (n−2)λg)2−4λfg = (f−λg)(n2f−λ(n−2)2g) ≤ 0, we
have that ∂S/∂R satisfies (7) and (8) in the region S, and consequently,
we can apply Lemma 2, to the differential equation (10), and the proof
of statement (v) is done. �
Proof of statement (vi) of Theorem 1. Doing the change of variables
R =

√
r in the region C, the differential equation (3) becomes

(11)
dR

dθ
=

λR + fR2n−1

2(1 + gR2n−2)
= S(R, θ).

Clearly the image of the simply connected region C under the map
r →

√
r = R is another simply connected region S containing the

origin R = 0.

We have

∂S

∂R
=

fgR4n−4 + ((2n− 1)f + λ(3− 2n)g)R2n−2 + λ

2(1 + gR2n−2)2
.

Then, if ((2n−1)f+λ(3−2n)g)2−4fgλ = (f−λg)((2n−1)2f−λ(2n−
3)2g) ≤ 0, we have that ∂S/∂R satisfies (7) and (8) in the region S,
and consequently, we can apply Lemma 2, to the differential equation
(11), and the proof of statement (vi) follows. �
Proof of statement (vii) of Theorem 1. Doing the change of variables
R = 1/

√
r in the region C, the differential equation (3) becomes

(12)
dR

dθ
=

−fR− λR2n−1

2(g +R2n−2)
= S(R, θ).

Now the image of the region C by the map r → 1/
√
r = R is an annular

region A, and one of the boundaries of this annulus is the infinity.

We get

∂S

∂R
= −λR4n−4 + ((3− 2n)f + λ(2n− 1)g)R2n−2 + fg

2(g +R2n−2)2
.

Then, clearly if ((3−2n)f+λ(2n−1)g)2−4λfg = (f−λg)((2n−3)2f−
λ(2n− 1)2g) ≤ 0, we have that ∂S/∂R satisfies conditions (7) and (8)
in the annular region A, and consequently we can apply Lemma 4, to
the differential equation (12), and this completes the proof of statement
(vii). �

In [10] it is proved that the system

ẋ = λx− y +
1

5λ
(5λx− y)2,

ẏ = x+ λy +
1

5λ
(5λx− y)(x+ 5λy),



LIMIT CYCLES OF A CLASS OF POLYNOMIAL DIFFERENTIAL SYSTEMS 7

has a unique limit cycle surrounding the origin. We note that this
system satisfies the assumption (vii) of Theorem 1 for n = 2.
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