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Abstract. It is well known that linear vector fields on the manifold
Rn cannot have limit cycles, but this is not the case for linear vector
fields on other manifolds. We study the periodic orbits of linear vector
fields on different manifolds, and motivate and present an open problem
on the number of limit cycles of linear vector fields on a class of C1

connected manifold.

1. Introduction and statement of the results

In the qualitative theory of the ordinary differential equations or vector
fields the periodic orbits play an important role in the study of their dynam-
ics. Inside the periodic orbits there is the class of limit cycles, a limit cycle
is a periodic orbit isolated in the set of all periodic orbits of the differential
equation or vector field.

Many works have been done on the limit cycles of many different differ-
ential equations (see for instance [5, 6, 7, 8, 9, 10] and the references quoted
there), but as far as we know nobody put attention on the limit cycles of
linear vector fields, probably because the vector fields in Rn have no limit
cycles. But there are interesting questions on the linear vector fields on
other manifolds. To show some of these questions is the objective of this
paper.

We deal with C1 connected manifolds and C1 vector fields on them. If M
is a C1 connected manifold and TM is its tangent bundle, here a vector field
X on M is a C1 map X : M → TM such that X(x) ∈ TxM , where TxM is
the tangent space to M at the point x.

A linear vector field in Rn is a vector field X defined as X(x) = Ax+ b,
where x, b ∈ Rn and A is a real n× n matrix.

Since the solutions of a linear vector field in Rn are well known, see for
instance [2, 14], it follows that when one of these vector fields has a periodic
orbit it is not isolated in the set of all periodic orbits, consequently linear
vector fields on Rn cannot have limit cycles.
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In this paper we only consider C1 connected manifolds M diffeomorphic
to Rn× (S1)m, where S1 denotes the circle R/(2πR). Then we say that a C1

vector field X on M is called linear if the expression of X in the coordinates
z = (x1, . . . , xn, θ1, . . . , θn) ∈ M is of the form X(z) = Az + b with b ∈ M
and A is a real (n+m)× (n+m) matrix.

Probably the easiest example that a linear differential system on a C1

connected manifold can have limit cycles is the following. Consider the
cylinder R × S1 with coordinates r ∈ R and θ ∈ S1, and on it the linear
vector field X defined by

X(r, θ) = (r, 1) ∈ T(r,θ)(R× S1) ≃ R2.

The differential system associated to the linear vector field X is

(1) ṙ = r, θ̇ = 1,

where the dot denotes derivative with respect to the independent variable
t. Then clearly r = 0 is a limit cycle of the linear vector field X.

Let R+ be the set of all positive real numbers. We consider the vector
field X on the connected manifold R+ ×R× S1 ≈ R2 × S1 with coordinates
r ∈ R+, z ∈ R and θ ∈ S1 associated to the differential system

(2) ṙ = −z, ż = r − 1, θ̇ = 1.

The solution (r(t), z(t), θ(t)) of the linear differential system (2) such that
(r(0), z(0), θ(0)) = (r0, z0, θ0) is

(3)
r(t) = 1 + (r0 − 1) cos t− z0 sin t,
z(t) = z0 cos t+ (r0 − 1) sin t,
θ(t) = t+ θ0.

Therefore the periodic orbits of system (2) fill all invariant tori z2 + (r −
1)2 = a2 with a ∈ (0, 1), and have period 2π. Let V be the submanifold
of R+ × R × S1 formed by the union of all above invariant tori together
with the periodic orbit z2 + (r − 1)2 = 0. So V is a submanifold formed by
2π–periodic orbits.

In the first part of this paper we study the periodic orbits of three different
kinds of linear perturbations of the linear vector field (2).

First we consider the Hamiltonian

H = H(r, z, w, θ)

=
1

2
(z2 + (r − 1)2) + w + ε(a1r + a2z + a3w+

a4r
2 + a5z

2 + a6w
2 + a7rz + a8rw + a9zw + a10θw),

defined on (r, z, w, θ) ∈ R+ × R2 × S1. Then the Hamiltonian system of 2
degrees of freedom associated to this Hamiltonian is the linear differential
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system

(4)

ṙ = −Hz = −z − ε(a2 + a7r + 2a5z + a9w),
ż = Hr = r − 1 + ε(a1 + 2a4r + a7z + a8w),
ẇ = −Hθ = −εa10w,

θ̇ = Hw = 1 + ε(a3 + a8r + a9z + 2a6w + a10θ).

For ε = 0 we have that H and w are independent first integrals in invo-
lution for the Hamiltonian system (4). Hence this system is completely
integrable in the Liouvillian sense. The unperturbed Hamiltonian system
(i.e. system (4) with ε = 0) is not generic in the sense that their invari-
ant tori are all filled of periodic orbits with period 2π, when the generic
completely integrable Hamiltonian systems with 2 degrees of freedom have
invariant tori filled either of periodic orbits or of quasi–periodic orbits (i.e.
orbits dense on the tori) depending on the rotation number of the tori which
varies in some interval of R. When the rotation number is rational the cor-
responding invariant torus is fulfilled of periodic orbits, otherwise is fulfilled
of quasi–periodic orbits. For more details on Hamiltonian systems and on
their Liouvillian integrability see [1, 3].

We note that Hamiltonian system (4) has the hyperplane w = 0 invari-
ant, i.e. if an orbit of system (4) has a point on that hyperplane all the
orbit is contained in it. So in what follows we will restrict our attention to
Hamiltonian system (4) restricted to the invariant hyperplane w = 0, i.e. to
the system

(5)
ṙ = −z − ε(a2 + a7r + 2a5z),
ż = r − 1 + ε(a1 + 2a4r + a7z),

θ̇ = 1 + ε(a3 + a8r + a9z + a10θ).

We observe that system (5) when ε = 0 coincides with system (2). For
system (5) we have the following result.

Theorem 1. For ε ̸= 0 sufficiently small the linear vector field associated to
the perturbed Hamiltonian system (4) restricted to the invariant hyperplane
w = 0 (i.e. system (5)) has a limit cycle bifurcating from the periodic orbits
of system (2) if (a4 + a5)a10 ̸= 0. Moreover this limit cycle bifurcates from
the periodic orbit z2 + (r − 1)2 = 0 of system (2).

Theorem 1 is proved in Section 3.

Now we consider a second kind of linear perturbation of the linear vector
field associated to system (2), namely

(6)

ṙ = −z + εa1z,
ż = r − 1 + εa2(1− r),

θ̇ = 1 + ε(a3 + a4r + a5z + a6θ).

We note (as we shall prove later on) that system (6) has the first integral
H = z2+(r−1)2. So for system (6) all the invariant tori of the unperturbed
system (2) persist. Clearly since H is a first integral of system (6), the
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periodic orbit H = 0 exists for every system (6). In what follows, for ε ̸= 0
sufficiently small and if (a1 + a2)a6 ̸= 0, we prove that the periodic orbit
H = 0 is a limit cycle of system (6), and that there are no limit cycles on
the invariant tori H = a with a ∈ (0, 1).

Theorem 2. For ε ̸= 0 sufficiently small the linear vector field associated
to system (6) has a limit cycle bifurcating from the periodic orbits of system
(2) if (a1 + a2)a6 ̸= 0. Moreover this limit cycle bifurcates from the periodic
orbit z2 + (r − 1)2 = 0 of system (2).

Theorem 2 is proved in Section 4.

Finally we deal with a third kind of linear perturbation of the linear vector
field associated to system (2), namely

(7)

ṙ = −z + ε(a0 + a1r + a2z + a3θ),
ż = r − 1 + ε(b0 + b1r + b2z + b3θ),

θ̇ = 1 + ε(c0 + c1r + c2z + c3θ).

That is, we consider the more general linear perturbation of system (2). For
this system we have the following result.

Theorem 3. For ε ̸= 0 sufficiently small the linear vector field associated
to system (7) has a limit cycle bifurcating from the periodic orbits of system
(2) if ((a2−b1)

2+(a1+b2)
2)c3 ̸= 0. Moreover this limit cycle bifurcates from

one of the periodic orbits contained on the invariant torus z2+(r−1)2 = a2

of system (2) if a ∈ (0, 1) and

a2 =
4(a23 + b23)

(a2 − b1)2 + (a1 + b2)2
,

or from the periodic orbit z2 + (r − 1)2 = 0 if a = 0.

Theorem 3 is proved in Section 5.

In the second part of this note we study the periodic orbits of linear
vector fields on the connected manifold R × (S1)2 with coordinates r ∈ R
and (θ, φ) ∈ (S1)2 associated to the differential systems

(8)

ṙ = r − 1 + ε(a0 + a1r + a2θ + a3φ),

θ̇ = 1 + ε(b0 + b1r + b2θ + b3φ),
φ̇ = 1 + ε(c0 + c1r + c2θ + c3φ).

Note that the topology of the connected manifold where systems (5), (6)
and (7) are defined is equal and different from the topology of the connected
manifold where system (8) is defined.

We remark that system (8) is the more general linear perturbation of
system (8) with ε = 0. Clearly all periodic orbits of system (8) with ε = 0
fill the invariant torus r = 1, and have period 2π. Let Z be this torus. Then
Z is a submanifold of dimension 2 of the 3–dimensional manifold R× (S1)2.
For system (8) we have the next result.
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Theorem 4. For ε ̸= 0 sufficiently small the linear vector field associated
to system (8) has a limit cycle bifurcating from the periodic orbits of system
(8) with ε = 0 if b2c3 − b3c2 ̸= 0. Moreover if a0 + a1 = a3 = a4 = 0, then
the torus r = 1 is invariant by the flow of system (8), and such a limit cycle
is on this torus when it exists.

Theorem 4 is proved in Section 6.

The key tool for proving Theorems 1, 2, 3 and 4 is the averaging theory.
For a general introduction to the averaging theory see the books of Sanders,
Verhulst and Murdock [13] and of Verhulst [15]. But the results on the
averaging theory that we shall use here are presented in Section 2.

As we shall see in the proofs of Theorems 1, 2, 3 and 4 our method based
on the averaging theory applied to linear vector fields at most can produce
one limit cycle.

We have provide the existence of at least one limit cycle for some linear
vector fields over R×S1 (see system (1)), over S1×S1 (see Theorem 4), over
R+ ×R× S1 (see Theorems 1, 2 and 3) and over R× (S1)2. In the first two
cases we also have proved that such linear vector fields have at most one
limit cycle. From these results a natural question is the following.

Open Question Let n and m be two non–negative integers. Is it true that
every linear vector field on the manifold Rn × (S1)m has at most one limit
cycle?

2. Basic results

In this section we present the basic results from the averaging theory that
we shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from
differential systems

(9) ẋ(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn

and F2 : R × Ω × (−ε0, ε0) → Rn are C2 functions, T–periodic in the first
variable, and Ω is an open subset of Rn. The main assumption is that the
unperturbed system

(10) ẋ(t) = F0(t,x),

has a submanifold of periodic solutions. A solution of this problem is given
using the averaging theory.

Let x(t, z, ε) be the solution of the system (10) such that x(0, z, ε) = z.
We write the linearization of the unperturbed system along the periodic
solution x(t, z, 0) as

(11) ẏ = DxF0(t,x(t, z, 0))y.
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In what follows we denote by Mz(t) some fundamental matrix of the linear
differential system (11), and by ξ : Rk × Rn−k → Rk the projection of Rn

onto its first k coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

Theorem 5. Let V ⊂ Rk be open and bounded, and let β0 : Cl(V ) → Rn−k

be a C2 function. We assume that

(i) Z = {zα = (α, β0(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z
the solution x(t, zα, 0) of (10) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (11) such
that the matrix M−1

zα (0)−M−1
zα (T ) has in the upper right corner the

k×(n−k) zero matrix, and in the lower right corner a (n−k)×(n−k)
matrix ∆α with det(∆α) ̸= 0.

We consider the function F : Cl(V ) → Rk defined by

(12) F(α) = ξ

(∫ T

0
M−1

zα (t)F1(t,x(t, zα, 0))dt

)
.

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) ̸= 0, then there
is a limit cycle φ(t, ε) of period T of system (9) such that φ(0, ε) → a as
ε → 0.

Theorem 5 goes back to Malkin [11] and Roseau [12], for a shorter proof
see [4].

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that
for each z ∈ Cl(V ), x(t, z, 0) is T–periodic. The set Cl(V ) is isochronous
for the system (9); i.e. it is a set formed only by periodic orbits all of them
having the same period. Then an answer to the problem of the bifurcation
of T–periodic solutions from the periodic solutions x(t, z, 0) contained in
Cl(V ) for system (9) is given in the following result.

Theorem 6 ((Perturbations of an isochronous set)). We assume that there
exists an open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈
Cl(V ), the solution x(t, z, 0) is T–periodic, then we consider the function
F : Cl(V ) → Rn defined by

(13) F(z) =

∫ T

0
M−1

z (t, z)F1(t,x(t, z, 0))dt.

If there exists a ∈ V with F(a) = 0 and det ((dF/dz) (a)) ̸= 0, then there
exists a limit cycle φ(t, ε) of period T of system (9) such that φ(0, ε) → a
as ε → 0.

For a proof of Theorem 6 see Corollary 1 of [4].

3. Proof of Theorem 1

Since r > 0 the periodic orbits (3) of the linear differential system (2) fill
all invariant tori fa(r, z, θ) = z2+(r−1)2−a2 = 0 with a ∈ (0, 1), and have
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period 2π. The torus fa(r, z, θ) = 0 is invariant by the flow of system (2),
because for every periodic solution (3) on fa(r, z, θ) = 0 we have that

dfa
dt

(r(t), z(t), θ(t)) =
∂fa
∂r

ṙ(t) +
∂fa
∂z

ż(t) +
∂fa
∂θ

θ̇(t) = 0.

Let V be the submanifold of R+×R×S1 formed by the union of all above
invariant tori together with the periodic orbit z2 + (r− 1)2 = 0. So V is an
open and bounded submanifold formed by 2π–periodic orbits.

By using Theorem 6 we want to study the limit cycles of the perturbed
system (5) for ε ̸= 0 sufficiently small, which bifurcate from the periodic
orbits of system (2). Thus for applying Theorem 6 to the differential system
(5) we take

(14)

k = n = 3,
x = (r, z, θ),
z = (r0, z0, θ0),

x(t, z, 0) = (r(t), z(t), θ(t)) given by (3),
F0(t,x) = (−z, r − 1, 1),
F1(t,x) = (a2 + a7r + 2a5z, a1 + 2a4r + a7z,

a3 + a8r + a9z + a10θ),
F2(t,x, ε) = 0,

Ω = R+ × R× S1,
T = 2π.

We note that since R × S1 can be thought as an open annulus, Ω can be
thought as an open subset of R3. Of course the open and bounded subset
V in the statement of Theorem 6 coincides with the submanifold V defined
in the previous paragraph.

For the function F0 and the periodic solution x(t, z, 0) given in (14), easy
computations show that the fundamental matrix Mz(t) of the differential
system (11) such that Mz(0) is the identity matrix of R3 is

(15) Mz(t) =

 cos t − sin t 0
sin t cos t 0
0 0 1

 .

We remark that for system (2) the fundamental matrix Mz(t) does not
depend on the particular periodic orbit x(t, z, 0); i.e. it is independent of
the initial conditions z.

In short all the assumptions of Theorem 6 are satisfied. Therefore we
must study the zeros in V of the system F(z) = 0 of three equations and
three unknowns, where F is given by (13). More precisely after some tedious
but easy computations we have

F(z) = (F1(r0, z0, θ0),F2(r0, z0, θ0),F3(r0, z0, θ0)),
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where
F1 = −2π(a4 + a5)z0,
F2 = 2π(a4 + a5)(r0 − 1),
F3 = 2π(a3 + a8 + a10(θ0 + π)).

So, since by assumptions (a4+a5)a10 ̸= 0, the unique solution of the previous
system is

(16) r0 = 1, z0 = 0, θ0 = −a3 + a8 + πa10
a10

.

Moreover the determinant

det

(
∂(F1,F2,F3)

∂(r0, z0, θ0)

∣∣∣∣
(16)

)
= 8π3(a4 + a5)

2a10 ̸= 0.

Hence applying Theorem 6 there is a periodic solution (r(t, ε), z(t, ε), θ(t, ε))
of the differential system (5) such that

(r(0, ε), z(0, ε), θ(0, ε)) 7→
(
1, 0,−a3 + a8 + πa10

a10

)
when ε 7→ 0. Therefore Theorem 1 is proved.

4. Proof of Theorem 2

In this section we want to study the limit cycles of the system (6) for
ε ̸= 0 sufficiently small, which bifurcate from the periodic orbits of system
(2).

First we note that H = z2 + (r − 1)2 is a first integral of system (6),
because over the solutions (r(t), z(t), θ(t)) of system (6) we have

df

dt
(r(t), z(t), θ(t)) =

∂f

∂r
ṙ(t) +

∂f

∂z
ż(t) +

∂f

∂θ
θ̇(t) = 0.

For applying Theorem 6 to the differential system (6) we take equalities
(14) but now F1 is

F1(t,x) = (a1z, a2(1− r), a3 + a4r + a5z + a6θ).

As the function F0 is the same than for system (5) the fundamental matrix
Mz(t) is also given by (15).

In short all the assumptions of Theorem 6 are satisfied. Therefore we
must study the zeros in V of the system F(z) = 0 given by (13). More
precisely, after the same computations than for system (5), we have

F(z) = (F1(r0, z0, θ0),F2(r0, z0, θ0),F3(r0, z0, θ0)),

where
F1 = π(a1 + a2)z0,
F2 = −π(a1 + a2)(r0 − 1),
F3 = 2π(a3 + a4 + a6(θ0 + π)).
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Hence, since by assumptions (a1 + a2)a6 ̸= 0, the unique solution of the
previous system is

(17) r0 = 1, z0 = 0, θ0 = −a3 + a4 + πa6
a6

.

Moreover the determinant

det

(
∂(F1,F2,F3)

∂(r0, z0, θ0)

∣∣∣∣
(17)

)
= 2π3(a1 + a2)

2a6 ̸= 0.

Therefore applying Theorem 6 there is a periodic solution (r(t, ε), z(t, ε),
θ(t, ε)) of the differential system (6) such that

(r(0, ε), z(0, ε), θ(0, ε)) 7→
(
1, 0,−a3 + a4 + πa6

a6

)
when ε 7→ 0. Therefore Theorem 2 is proved.

5. Proof of Theorem 3

Here we want to study the limit cycles of the system (7) for ε ̸= 0 suffi-
ciently small, which bifurcate from the periodic orbits of system (2).

For applying Theorem 6 to the differential system (7) we take equalities
(20) but now F1 is

F1(t,x) = (a0 + a1r + a2z + a3θ, b0 + b1r + b2z + b3θ, c0 + c1r + c2z + c3θ).

As the function F0 is the same than for system (5) the fundamental matrix
Mz(t) is given by (21).

In short all the assumptions of Theorem 6 are satisfied. Therefore we
must study the zeros in V of the system F(z) = 0 given by (13). More
precisely, after some computations, we have

F(z) = (F1(r0, z0, θ0),F2(r0, z0, θ0),F3(r0, z0, θ0)),

where

F1 = π(−2b3 + (a1 + b2)(r0 − 1) + (a2 − b1)z0),
F2 = π(a2 + 2a3 − b1 + (b1 − a2)r0 + (a1 + b2)z0),
F3 = 2π(c0 + c1 + c3(π + θ0)).

Hence, since by assumptions ((a2 − b1)
2 + (a1 + b2)

2)c3 ̸= 0 and

0 ≤ a2 =
4(a23 + b23)

(a2 − b1)2 + (a1 + b2)2
< 1,
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the unique solution of the system F(z) = 0 is

(18)

r0 =
(a2 − b1)(a2 + 2a3 − b1) + (a1 + b2)(a1 + b2 + 2b3)

(a2 − b1)2 + (a1 + b2)2
,

z0 =
2(a2 − b1)b3 − 2a3(a1 + b2)

(a2 − b1)2 + (a1 + b2)2
,

θ0 = −c0 + c1 + c3π

c3
.

Note that (r0 − 1)2 + z20 = a2. Moreover the determinant

det

(
∂(F1,F2,F3)

∂(r0, z0, θ0)

∣∣∣∣
(18)

)
= 2π3((a2 − b1)

2 + (a1 + b2)
2)c3 ̸= 0.

Therefore applying Theorem 6 there is a periodic solution (θ(t, ε), z(t, ε),
θ(t, ε)) of the differential system (7) such that

(r(0, ε), z(0, ε), θ(0, ε)) 7→ (r0, z0, θ0)

when ε 7→ 0, here r0, z0 and θ0 are the ones given in (18). Therefore Theorem
3 is proved.

6. Proof of Theorem 4

First it is easy to check that the solution (r(t), θ(t), φ(t)) of the linear
differential system (8) with ε = 0 such that (r(0), θ(0), φ(0)) = (r0, θ0, φ0)
is

r(t) = 1 + et(r0 − 1), θ(t) = t+ θ0, φ(t) = t+ φ0.

Therefore the periodic solutions of system (8) with ε = 0 are

(19) r(t) = 1, θ(t) = t+ θ0, φ(t) = t+ φ0.

So the periodic orbits of system (8) with ε = 0 fill the invariant tori r = 1,
and have period 2π.

For system (8) is easy to check that ṙ|r=1 = 0 if and only if a0 + a1 =
a3 = a4 = 0. So the torus r = 1 is invariant by the flow of system (8) if and
only if a0 + a1 = a3 = a4 = 0.

By using Theorem 5 we want to study the limit cycles of system (8) for
ε ̸= 0 sufficiently small, which bifurcate from the periodic orbits of system
(8) with ε = 0. Thus for applying Theorem 5 to the differential system (8)
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we take

(20)

k = 2,
n = 3,
x = (θ, φ, r),
α = (θ0, φ0),

β0(α) = 1,
zα = (α, β0(α)) = (θ0, φ0, 1),
Z = {(θ0, φ0, r) ∈ (S1)2 × R : r = 1},

x(t, zα, 0) = (θ(t), φ(t), r(t)) given by (19),
F0(t,x) = (1, 1, r − 1),
F1(t,x) = (b0 + b1r + b2θ + b3φ, c0 + c1r + c2θ + c3φ,

a0 + a1r + a2θ + a3φ),
F2(t,x, ε) = 0,

Ω = (S1)2 × R,
T = 2π.

We note that the open solid torus (S1)2×R can be thought as an open subset
of R3. Of course the open and bounded subset V ⊂ Z in the statement of
Theorem 5 can be taken as {(θ0, φ0) ∈ (S1)2}, i.e. V is diffeomorphic to Z.

For the function F0 and the periodic solution x(t, zα, 0) given in (20), easy
computations show that the fundamental matrix Mzα(t) of the differential
system (11) such that Mzα(0) is the identity matrix of R3 is

(21) Mzα(t) =

 1 0 0
0 1 0
0 0 et

 .

We remark that for system (8) the fundamental matrix Mzα(t) does not
depend on the particular periodic orbit x(t, zα, 0); i.e. it is independent of
the initial conditions zα.

Since the matrix

M−1
zα (0)−M−1

zα (2π) =

 0 0 0
0 0 0
0 0 1− e−2π

 ,

all the assumptions of Theorem 5 are satisfied. Therefore we must study
the zeros in V of the system F(zα) = 0 of two equations and two unknowns,
where F is given by (12). More precisely after some tedious but easy com-
putations we have

F(zα) = (F1(θ0, φ0),F2(θ0, φ0)),

where

F1 = 2π(b0 + b1 + b3(φ0 + π) + b2(θ0 + π)),
F2 = 2π(c0 + c1 + c3(φ0 + π) + c2(θ0 + π)).
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So, since by assumptions b2c3−b3c2 ̸= 0, the unique solution of the previous
system is

(22)

θ0 =
b3(c0 + c1 + πc2)− c3(b0 + b1 + b2π)

b2c3 − b3c2
,

φ0 =
c2(b0 + b1 + πb3)− b2(c0 + c1 + c3π)

b2c3 − b3c2
.

Moreover the determinant

det

(
∂(F1,F2)

∂(θ0, φ0)

∣∣∣∣
(22)

)
= 4π2(b2c3 − b3c2) ̸= 0.

Hence applying Theorem 5 there is a periodic solution (θ(t, ε), φ(t, ε)) of the
differential system (8) such that

(θ(0, ε), φ(0, ε)) 7→ (θ0, φ0)

when ε 7→ 0, here θ0 and φ0 are the ones given in (22). Therefore Theorem
4 is proved.
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