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Abstract. In this paper we study the limit cycles of the discon-
tinuous piecewise linear differential systems in the plane R2 formed
by three arbitrary linear centers separated by the set

Σ = {(x, y) ∈ R2 : y = 0 or x = 0 and y ≥ 0}.
We prove that such discontinuous piecewise linear differential sys-
tems can have 1, 2 or 3 limit cycles which intersect in a unique
point each branch of the set Σ, and that they cannot have more
than 3 of such limit cycles.

1. Introduction and statement of the main result

For a differential system in the plane R2 a periodic orbit which is
isolated in the set of all periodic orbits is a limit cycle. At the end of the
19th century started the studies of the limit cycles of the differential
systems with Poincaré [15]. Limit cycles modelize many phenomena of
the real world, see the Belousov–Zhabotinskii reaction [2, 21], or the
van der Pol oscillator [16, 17], or the motion of the galaxies [5], and
many examples can be found in the survey [13], or in the book [3].

In the book of Andronov, Vitt and Khaikin [1] appeared some of the
first studies on the discontinuous piecewise linear differential systems in
the plane R2 separated by straight lines. The work on such differential
systems has continued up today, mainly due to their applications, for
instance in mechanics, economy, electrical circuits, etc, see the surveys
[13, 20] and the books [3, 19].

There are two types of limit cycles in the planar discontinuous piece-
wise linear differential systems, the crossing and sliding ones. The
sliding limit cycles contain some arc of the lines of discontinuity which
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separate the different linear differential systems (more precise definition
can be found in [14]). The crossing limit cycles only contain isolated
points of the lines of discontinuity. In this paper we only consider the
crossing limit cycles of some planar discontinuous piecewise linear d-
ifferential systems separated by pieces of straight lines. From now on
we only shall work with crossing limit cycles, but we simply call them
limit cycles instead of crossing limit cycles.

The easiest discontinuous piecewise linear differential systems in the
plane are the discontinuous piecewise linear differential systems sep-
arated by a unique straight line. It is known that such differential
systems can have 3 limit cycles, see [4, 6, 7, 8, 9, 11]. But at this mo-
ment it is an open problem to know if 3 is the maximum number of limit
cycles that such discontinuous piecewise linear differential systems can
have.

Here our objective is to study the number of limit cycles which can
exhibit the planar discontinuous piecewise linear differential systems
separated by pieces of straight lines such that all their linear differen-
tial systems are formed by centers. There are some results on these
piecewise linear differential systems. Thus in Theorem 4 of [10] it is
proved:

Theorem 1. A discontinuous piecewise linear differential system sep-
arated by one straight line formed by two linear centers has no limit
cycles.

Figure 1. The limit cycle of the discontinuous piecewise
linear differential system (1). The two straight lines of sepa-
ration between the differential systems are drawn in red col-

or.

But in [12] it is proved the existence of discontinuous piecewise linear
differential system separated by two parallel straight lines and formed
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by three linear centers, which exhibit one limit cycle. As far as we
know this discontinuous system was the first example that only centers
in a piecewise linear differential system can create limit cycles. More
precisely, consider the discontinuous piecewise linear differential system
with three pieces separated by the two parallel straight lines x = ±1
defined by

(1)

ẋ = 2(−4 + 4x+ 5y), ẏ = −8(1 + x+ y), if x > 1,

ẋ = 1 + 2y, ẏ = 1− 2x, if −1 < x < 1,

ẋ = (16 + 32x+ 65y)/2, ẏ = −8(x+ 2y), if x < −1.

These three linear differential systems are centers, and the discontin-
uous piecewise linear differential system has the limit cycle of Figure
1.

Figure 2. The unique limit cycle of the discontinuous
piecewise linear differential system (2).

Our main result is the following:

Theorem 2. Consider three linear differential systems formed by cen-
ters and separated by the set

Σ = {(x, y) : y = 0 or x = 0 and y ≥ 0}.
Such discontinuous piecewise linear differential systems can have at
most 3 limit cycles intersecting the three branches of Σ \ {(0, 0)} in
one point. Moreover, inside this class of discontinuous piecewise linear
differential systems there are systems with exactly either 1,or 2, or 3
limit cycles.

Theorem 2 is proved in section 2.
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We remark that in general it is not easy to provide an explicit upper
bound for the maximum number of limit cycles in a class of differential
systems, and such that this bound be reached.

Figure 3. The two limit cycles of the discontinuous piece-
wise linear differential system (3).

The three components of R2 \ Σ are the positive or first quadrant
Q1 = {(x, y) ∈ R2 : x > 0 and y > 0}, the second quadrant Q2 =
{(x, y) ∈ R2 : x < 0 and y > 0}, and the half-plane H = {(x, y) ∈ R2 :
y < 0}.

Proposition 3. Consider the discontinuous piecewise linear differen-
tial system with three pieces separated by the set Σ defined by

(2)

ẋ = −1

4
y − 1, ẏ = x− 1, in Q1,

ẋ = −1

4
y, ẏ = x+

4

3
, in Q2,

ẋ = −1

4
y, ẏ = x+ 1, in H.

These three linear differential systems are centers, and the discontinu-
ous piecewise linear differential system has exactly one limit cycle, see
it in Figure 2.
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Figure 4. The three limit cycles of the discontinuous piece-
wise linear differential system (4).

Proposition 4. Consider the discontinuous piecewise linear differen-
tial system with three pieces separated by the set Σ defined by

(3)

ẋ = −y +
1

2
, ẏ = x+

1

2
, in Q1,

ẋ = − 479

1000
y +

97

400
, ẏ =

1

2
x− 31

200
, in Q2,

ẋ = −1

8
y, ẏ = 2x+

1

10
, in H.

These three linear differential systems are centers, and the discontinu-
ous piecewise linear differential system has exactly two limit cycles, see
them in Figure 3.

Proposition 5. Consider the discontinuous piecewise linear differen-
tial system with three pieces separated by the set Σ defined by
(4)

ẋ = − 2

1565
y − 379

1565
, ẏ = 2x− 237

313
, in Q1,

ẋ = − 4

1565
y − 11566

10955
, ẏ = 8x+

4
√

4430533

2191
, in Q2,

ẋ = −2y, ẏ = 8x+
2
(√

4430533− 1299
)

2191
, in H.

These three linear differential systems are centers, and the discontin-
uous piecewise linear differential system has exactly three limit cycles,
see them in Figure 4.

Propositions 3, 4 and 5 are proved in section 3.
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2. Proof of Theorem 2

It is known that a normal form for a linear differential system having
a center is given in the next result. Since the proof is short we provide
it.

Lemma 6. The equations of a linear differential system with a center
are

ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c,

with a > 0 and ω > 0.

Proof. Consider an arbitrary linear differential system

ẋ = Ax+By + d, ẏ = ax+ by + c,

in the plane and suppose that it has a center. Then the eigenvalues of
this system are

A+ b±
√

4aB + (A− b)2
2

.

If this system has a center then A+ b = 0 and 4aB + (A− b)2 = −ω2

for some ω > 0 and aB < 0, i.e. if A = −b, B = −(4b2 + ω2)/(4a) and
a > 0. Therefore the lemma is proved. �

We remark that the normal form in Lemma 6 is independent of the
change of coordinates, so in the next proof of Theorem 2 we can use
this normal form in each of the three regions Q1, Q2 and H for the
three centers.

Now we start the proof of Theorem 2. Suppose that we have a
discontinuous piecewise linear differential system separated by the set
Σ formed by three linear centers. By Lemma 6 we can write such a
discontinuous piecewise linear differential system as

(5)

ẋ = −βx− 4β2 + ω2

4α
y + δ, ẏ = αx+ βy + γ, in Q1,

ẋ = −bx− 4b2 + w2

4a
y + d, ẏ = ax+ by + c, in Q2,

ẋ = −Bx− 4B2 +W 2

4A
y +D, ẏ = Ax+By + C, in H.
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The linear centers in Q1, Q2 and H have the first integrals H1, H2

and H3, respectively, where

H1(x, y) = 4(αx+ βy)2 + 8α(γx− δy) + ω2y2,

H2(x, y) = 4(ax+ by)2 + 8a(cx− dy) + w2y2,

H3(x, y) = 4(Ax+By)2 + 8A(Cx−Dy) +W 2y2.

Suppose that this discontinuous piecewise differential system with
three linear centers has some limit cycle intersecting each branch of
Σ \ {(0, 0)} in one point, namely (x+, 0) with x+ > 0, (0, y+) with
y+ > 0, and (x−, 0) with x− < 0. Then the first integrals H1, H2 and
H3 must satisfy the following three equations

H1(x+, 0)−H1(0, y+) = 0,

H2(0, y+)−H2(x−, 0) = 0,

H3(x−, 0)−H3(x+, 0) = 0,

or equivalently

(6)

4α2x2+ − (4β2 + ω2) y2+ + 8αγx+ + 8αδy+ = 0,

4a2x2− − (4b2 + w2) y2+ + 8acx− + 8ady+ = 0,

−4A(x+ − x−)(Ax+ + Ax− + 2C) = 0.

Since x+ − x− > 0, by Bezout Theorem (see for instance [18]), the
system of the three polynomial equations (6) of degrees 2, 2 and 1 have
at most 4 real solutions (x+, y+, x−). So the discontinuous piecewise
linear differential system (2) can have at most 4 limit cycles.

Since x+ > 0, x− < 0 and A 6= 0 the third equation of system (6)
reduces to Ax+ + Ax− + 2C = 0. Isolating x− from this equation
and substituting it into the second equation of system (6), we get the
system

(7)

4α2x2+ − (4β2 + ω2) y2+ + 8αγx+ + 8αδy+ = 0,

4a2x2+ − (4b2 + w2) y2+ +
8a(2aC − Ac)

A
x+

+8ady+ +
16aC(aC − Ac)

A2
= 0.

Note that we can assume C(aC−Ac) 6= 0, otherwise the polynomial
system (7) has the solution (0, 0) which cannot contribute with a limit
cycle having a unique point in each branch of Σ \ {(0, 0)}. So, in this
case system (7) only can have at most 3 solutions which can provide
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at most 3 limit cycles for the discontinuous piecewise linear differential
system (2), and the theorem is proved if C(aC − Ac) = 0.

In order that the polynomial system (6) can have eventually four real
solutions, (xk+, y

k
+, x

k
−) for k = 1, 2, 3, 4, producing four limit cycles for

the discontinuous piecewise linear differential system (2) it is necessary
that x1+, x

2
+, x

3
+ and x4+ have the same order as that of y1+, y

2
+, y

3
+

and y4+. For instance,

(8) x1+ < x2+ < x3+ < x4+ and y1+ < y2+ < y3+ < y4+,

otherwise the solutions of the piecewise linear differential system (2)
connecting the points (xk+, 0) and (0, yk+) in the quadrant Q1 would in-
tersect, in contradiction with the Uniqueness Theorem for the solutions
of an ordinary differential equation.

In what follows, but only inside the rest of this section, in order to
simplify the notation we shall write xk and yk instead of xk+ and yk+,
respectively.

We consider the following two conics

(9)
F1(x, y) = ax2 + by2 + cx+ dy = 0,

F2(x, y) = Ax2 +By2 + Cx+Dy + E = 0.

where abABE 6= 0. We claim that the polynomial systems (9) cannot
have 4 solutions (xk, yk) with x1, x2, x3, x4 and y1, y2, y3, y4 having
the same order as illustrated in (8). Since the systems (9) contain the
systems (7), it follows that systems (7) cannot have 4 solutions (xk, yk)
with x1, x2, x3, x4 and y1, y2, y3, y4 having the same order. Hence
the discontinuous piecewise linear differential system (2) cannot have 4
limit cycles, and this completes the proof of the theorem after proving
Propositions 3, 4 and 5.

For proving the claim we consider that the two conics of (9) share
four points (xk, yk) with x1, x2, x3, x4 and y1, y2, y3, y4 having the
same order, and we shall arrive to a contradiction. Since the first conic
(9) has the four distinct points (xk, yk), these points satisfy the system

(10)

ax21 + by21 + cx1 + dy1 = 0,

ax22 + by22 + cx2 + dy2 = 0,

ax23 + by23 + cx3 + dy3 = 0,

ax24 + by24 + cx4 + dy4 = 0.
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The determinant of this linear system in the variables a, b, c and d is
the determinant of the matrix

(11) M =


x21 y21 x1 y1

x22 y22 x2 y2

x23 y23 x3 y3

x24 y24 x4 y4

 ,

which is zero, otherwise the coefficients of the first conic of (9) will be
all zero, in contradiction with the fact that ab 6= 0. So the rank of the
matrix M is at most 3.

Since the second conic (9) also has the four points (xk, yk), these
points satisfy the system

(12)

Ax21 +By21 + Cx1 +Dy1 = −E,
Ax22 +By22 + Cx2 +Dy2 = −E,
Ax23 +By23 + Cx3 +Dy3 = −E,
Ax24 +By24 + Cx4 +Dy4 = −E.

Case 1. Assume that the rank of the matrix M is 3. So a row of
this matrix is a linear combination of the other three, without loss of
generality assume that it is the fourth arrow. Then there exist λi for
i = 1, 2, 3 not all zero such that

x24 = λ1x
2
1 + λ2x

2
2 + λ3x

2
3,

y24 = λ1y
2
1 + λ2y

2
2 + λ3y

2
3,

x4 = λ1x1 + λ2x2 + λ3x3,

y4 = λ1y1 + λ2y2 + λ3y3.

We define K = x21x2y
2
3−x21x3y22−x1x22y23 +x1x

2
3y

2
2 +x22x3y

2
1−x2x23y21,

and we consider two subcases.

Subcase 1.1: K 6= 0. Under this assumption we can solve the first
three equations of system (12) with respect the variables A, B and C
obtaining

A =
A1D + A2E

K
, B =

B1D +B2E

K
, C =

C1D + C2E

K
,
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where

A1 = −x1y22y3 + x1y2y
2
3 + x2y

2
1y3 − x2y1y23 − x3y21y2 + x3y1y

2
2,

A2 = −x1y22 + x1y
2
3 + x2y

2
1 − x2y23 − x3y21 + x3y

2
2,

B1 = −x21x2y3 + x21x3y2 + x1x
2
2y3 − x1x23y2 − x22x3y1 + x2x

2
3y1,

B2 = (x2 − x1)(x1 − x3)(x2 − x3),
C1 = x21y

2
2y3 − x21y2y23 − x22y21y3 + x22y1y

2
3 + x23y

2
1y2 − x23y1y22,

C2 = x21y
2
2 − x21y23 − x22y21 + x22y

2
3 + x23y

2
1 − x23y22.

Substituting A, B and C in the fourth equation of (12) we obtain
E(λ1 + λ2 + λ3 − 1) = 0. Since E 6= 0 we have λ1 + λ2 + λ3 = 1.

Now we solve the system

(13)

λ1 + λ2 + λ3 − 1 = 0,

(λ1x1 + λ2x2 + λ3x3)
2 − λ1x21 − λ2x22 − λ3x23 = 0,

(λ1y1 + λ2y2 + λ3y3)
2 − λ1y21 − λ2y22 − λ3y23 = 0.

with respect to the variables λ1, λ2 and λ3, and we get

λ1 =
1

L
(−x1y2 + x1y3 − x2y1 + 2x2y2 − x2y3 + x3y1 − x3y2)

(−x1y2 + x1y3 − x2y1 + x2y3 + x3y1 + x3y2 − 2x3y3),

λ2 = − 1

L
(−2x1y1 + x1y2 + x1y3 + x2y1 − x2y3 + x3y1 − x3y2)

(−x1y2 + x1y3 − x2y1 + x2y3 + x3y1 + x3y2 − 2x3y3),

λ3 = 1− λ1 − λ2,
provided that L = (x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1))2 6= 0. We
note that if L = 0 then taken

x3 =
−x1y2 + x1y3 + x2y1 − x2y3

y1 − y2
,

and solving the system (13) we get

λ1 =
−2λ3y1 + y1 − y2 + 2λ3y3 +R

2y1 − 2y2
,

λ2 =
−2λ3y1 + y1 − y2 + 2λ3y3 −R

2y1 − 2y2
,

where R = ±
√
y21 − 2y1(−2λ3y2 + y2 + 2λ3y3) + y22 − 4λ3y2y3 + 4λ3y23.

If R is complex we are done. If R is real then λ1 and λ2 depend on
λ3, and the rank of the matrix M is not 3 as we are considering, so L
cannot be zero.
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In short, we have that

(14) F2 = D(d1x
2+d2y

2+d3x+d4y)+E(e1x
2+e2y

2+e3x+e4y+e5),

where

d1 = −x1y22y3 + x1y2y
2
3 + x2y

2
1y3 − x2y1y23 − x3y21y2 + x3y1y

2
2,

d2 = −x21x2y3 + x21x3y2 + x1x
2
2y3 − x1x23y2 − x22x3y1 + x2x

2
3y1,

d3 = x21y
2
2y3 − x21y2y23 − x22y21y3 + x22y1y

2
3 + x23y

2
1y2 − x23y1y22,

d4 = x21x2y
2
3 − x21x3y22 − x1x22y23 + x1x

2
3y

2
2 + x22x3y

2
1 − x2x23y21,

e1 = −x1y22 + x1y
2
3 + x2y

2
1 − x2y23 − x3y21 + x3y

2
2,

e2 = (x2 − x1)(x1 − x3)(x2 − x3),
e3 = x21y

2
2 − x21y23 − x22y21 + x22y

2
3 + x23y

2
1 − x23y22,

e4 = 0,

e5 = x21x2y
2
3 − x21x3y22 − x1x22y23 + x1x

2
3y

2
2 + x22x3y

2
1 − x2x23y21.

From the computations for obtaining the expression of F2 given in
(14) it follows immediately the expression of F1, i.e.

(15) F1 = d(d1x
2 + d2y

2 + d3x+ d4y).

Now solving the system F1(x, y) = 0 and F2(x, y) = 0, we obtain the
four points (xk, yk) for k = 1, 2, 3, 4 with

(16)
x4 = −2(x1 − x3)(x3 − x2)(y1 − y2)

N
+ x1 + x2 − x3,

y4 =
2(y1 − y3)(y3 − y2)(x1 − x2)

N
+ y1 + y2 − y3,

where N = x1(y2− y3) + x2(y3− y1) + x3(y1− y2) 6= 0 because L = N2

and we have proved that L 6= 0.

We can label the points (xk, yk) in order that

(17) x1 < x2 < x3 and y1 < y2 < y3.

Now we claim that the following four systems of inequalities do not
hold:

(18)

x1 < x2 < x3 < x4 and y1 < y2 < y3 < y4,

x1 < x2 < x4 < x3 and y1 < y2 < y4 < y3,

x1 < x4 < x2 < x3 and y1 < y4 < y2 < y3,

x4 < x1 < x2 < x3 and y4 < y1 < y2 < y3.
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We prove this claim. We can assume without loss of generality that
N > 0. Using the expressions of x4 and y4 given in (16) we obtain

x4 − x1 =
x2 − x3
N

(2(x1 − x3)(y1 − y2)

+ x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))
(19)

Since x2 > x1 we have

2(x1 − x3)(y1 − y2) + x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
> 2(x1 − x3)(y1 − y2) + x1(y2 − y1) + x3(y1 − y2)
= (x1 − x3)(y1 − y2) > 0.

Then from (17) and (19) it follows that x4 − x1 < 0. Now note that

y4 − y1 =
y2 − y3
N

(−2(x1 − x2)(y1 − y3)

+ x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)).
(20)

Since x3 > x1 we have

−2(x1 − x2)(y1 − y3) + x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
< −2(x1 − x2)(y1 − y3) + x1(y1 − y3) + x2(y3 − y1)
= −(x1 − x2)(y1 − y3) < 0.

Therefore from (17) and (20) we obtain y4 − y1 > 0.

Doing similar computations for x4 − x2 and y4 − y2 we get

x4 − x2 =
x1 − x3
N

(2(x2 − x3)(y1 − y2)

+ x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))

<
(x1 − x3)(x2 − x3)(y1 − y2)

N
< 0,

y4 − y2 =
y1 − y3
N

(−2(x1 − x2)(y2 − y3)

+ x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2))

>
(−2(x1 − x2)(y1 − y3)(y2 − y3)

N
> 0.

(21)
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Finally

x4 − x3 =− 2(x1 − x3)(x3 − x2)(y1 − y2)
N

+ x1 + x2 − 2x3

=

(
(x1 − x3)(x2 − x3)(y1 − y2)

N
+ x1 − x3

)
+

(
(x1 − x3)(x2 − x3)(y1 − y2)

N
+ x2 − x3

)
<0 + 0 = 0,

y4 − y3 =
2(y1 − y3)(y3 − y2)(x1 − x2)

N
+ y1 + y2 − 2y3

=

(
(y1 − y3)(y3 − y2)(x1 − x2)

N
+ y1 − y3

)
+

(
(y1 − y3)(y3 − y2)(x1 − x2)

N
+ y2 − y3

)
>0 + 0 = 0.

(22)

Summarizing these results we obtain

(x4−x1)(y4−y1) < 0, (x4−x2)(y4−y2) < 0, (x4−x3)(y4−y3) < 0.

This proves the claim.

Since at least one of the four inequalities in (18) must hold in order
that the piecewise linear differential system (2) has 4 limit cycles, it
follows that in this subcase the system has at most 3 limit cycles.

Subcase 1.2: K = 0. Then solving the system F1(x, y) = 0 and
F2(x, y) = 0 we get that y = ((y1 − y2)x − x2y1 + x1y2)/(x1 − x2),
So we have a continuum of solutions, and consequently no limit cycles.

Case 2: Assume that the rank of the matrix M is 2. Now two rows of
the matrix M are linear combination of the other two rows. Without
loss of generality we can suppose that the rows three and four are
combination of the rows one and two, i.e.
(23)
x3 = λ1x1+λ2x2, y3 = λ1y1+λ2y2, x

2
3 = λ1x

2
1+λ2x

2
2, y

2
3 = λ1y

2
1+λ2y

2
2.

A similar expression we have for x4, y4, x
2
4 and y24 but with µ’s instead

of λ’s.
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Again we assume that the conics F1 = 0 and F2 = 0 share four points
(xk, yk) for k = 1, 2, 3, 4. Substituting them in F2 we obtain

(24)

Ax21 +By21 + Cx1 +Dy1 + E = 0,

Ax22 +By22 + Cx2 +Dy2 + E = 0,

E(1− λ1 − λ2) = 0,

E(1− µ1 − µ2) = 0.

respectively.

From (23) and (16) we get that either (λ1, λ2) = (1, 0), or (λ1, λ2) =
(0, 1). Therefore, the third row is either equal to the first row, or two
the second. In contradiction with the fact that the four points (xk, yk)
are distinct.

Case 3: The rank of the matrix M is one. But then the four points
(xk, yk) are collinear in contradiction with the fact that the two hyper-
bolas (7) cannot intersect in four collinear points.

In summary, the discontinuous piecewise linear differential system
(2) has at most 3 limit cycles. So the proof of Theorem 2 is completed,
modulo the proof of the Propositions 3, 4 and 5.

3. Proofs of Propositions 3, 4 and 5

Proof of Proposition 3. We shall prove that the discontinuous piecewise
linear differential system (2) having a center in each of the pieces Q1,
Q2 and H has exactly 1 limit cycle.

Since ±4i are the eigenvalues of the matrices of the three linear
differential systems of (2), these systems are centers.

The three linear differential systems of (3) have the following first
integrals

H1(x, y) = 4x2 + y2 − 8x− 4y,

H2(x, y) = 4x2 + y2 +
32

3
x,

H3(x, y) = 4x2 + y2 + 8x,
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in Q1, Q2 and H, respectively. Then for the discontinuous piecewise
linear differential system (2) the system (6) becomes

4x2+ − y2+ − 8x+ + 4y+ = 0,

4x2− − y2+ +
32

3
x− = 0,

(x+ − x−)(2 + x− + x+) = 0.

Taking into account that we are only interested in the solutions (x+, y+, x−)
satisfying x+ > 0, x− < 0 and y+ > 0, the unique solution of the pre-
vious system is (x1+, y

1
+, x

1
−) = (1, 2,−3).

The first linear differential system of (2) has the solution

x1(t) = sin2(4t) + cos2(4t)− cos(4t),

y1(t) = 2
(
sin2(4t) + cos2(4t)− sin(4t)

)
,

satisfying the initial conditions x1(0) = 1 and y1(0) = 0. The second
linear differential system of (2) has the solution

x2(t) = −1

3

(
4 sin2(4t) + 4 cos2(4t) + 5 cos(4t)

)
,

y2(t) =
10

3
sin(4t),

satisfying the initial conditions x2(0) = 0 and y2(0) = 2. And the third
linear differential system of (2) has the solution

x3(t) = 2 cos(4t)− sin2(4t)− cos2(4t),

y3(t) = −4 sin(4t),

satisfying the initial conditions x3(0) = −3 and y3(0) = 0.

The time that the solution (x1(t), y1(t)) contained in Q1 needs to
reach the point (0, 2) is t1 = 0.3926990954490209.. The time that the
solution (x2(t), y2(t)) contained in Q2 needs to reach the point (−3, 0) is
t2 = 0.624522886199127.. The time that the solution (x3(t), y3(t)) con-
tained in H needs to reach the point (1, 0) is t3 = 0.785398163397448..

Drawing the the orbit (xk(t), yk(t)) for the times t ∈ [0, tk] for k =
1, 2, 3, we obtain the limit cycle of Figure 2. �

Proof of Proposition 4. We shall prove that the discontinuous piecewise
linear differential system (3) having a center in each of the pieces Q1,
Q2 and H has exactly 2 limit cycles.
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Since ±i, ± 1

20

√
479

5
i and ±1

2
i are the eigenvalues of the matrices of

the three linear differential systems of (3), these systems are centers.

The three linear differential systems of (3) have the following first
integrals

H1(x, y) = x2 + y2 + x− y,

H2(x, y) = x2 +
479

500
y2 − 31

50
x− 97

100
y,

H3(x, y) = 16x2 + +y2 +
8

5
x,

in Q1, Q2 and H, respectively. Then for the discontinuous piecewise
linear differential system (3) the system (6) becomes

(25)

(x+ − y+ + 1)(x+ + y+) = 0,

900x2− − 977y2+ − 1410x− + 955y+ = 0,

(x+ − x−)(1− 10x+ − 10x−) = 0.

Taking into account that we are only interested in the solutions (x+, y+, x−)
satisfying x+ > 0, x− < 0 and y+ > 0, the unique two solutions of the
previous system are

(x1+, y
1
+, x

1
−) =

(
2, 3,−19

10

)
and (x2+, y

2
+, x

2
−) =

(
1, 2,− 9

10

)
.

The first linear differential system of (3) has the solution

x1(t) =
1

2
((2u+ 1) cos t+ sin t− 1),

y1(t) =
1

2
((2u+ 1) sin t− cos t+ 1),

satisfying the initial conditions x1(0) = u and y1(0) = 0.

The second linear differential system of (3) has the solution

x2(t) =
485− 958v

20
√

2395
sin

(
1

20

√
479

5
t

)
− 31

100
cos

(
1

20

√
479

5
t

)
+

31

100
,

y2(t) =

(
v − 485

958

)
cos

(
1

20

√
479

5
t

)
− 31

2
√

2395
sin

(
1

20

√
479

5
t

)
+

485

958
,
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satisfying the initial conditions x2(0) = 0 and y2(0) = v. And the third
linear differential system of (3) has the solution

x3(t) =
1

20

(
(20w + 1) cos

(
t

2

)
− 1

)
,

y3(t) =
1

5
(20w + 1) sin

(
t

2

)
,

satisfying the initial conditions x3(0) = w and y3(0) = 0.

Now we consider the solution (x1k(t), y1k(t)) for k = 1, 2, 3 of the dis-
continuous piecewise linear differential system (3) corresponding to the
solution (x1+, y

1
+, x

1
−) = (u, v, w) = (2, 3,−19/10) of system (25). Then

the time that the solution (x11(t), y
1
1(t)) contained in Q1 needs to reach

the point (0, v) is t1 = 1.5707963267948966.. The time that the so-
lution (x12(t), y

1
2(t)) contained in Q2 needs to reach the point (w, 0) is

t2 = 3.3659397308004984.. The time that the solution (x13(t), y
1
3(t)) con-

tained in H needs to reach the point (u, 0) is t3 = 6.283185307179586..

Let (x2k(t), y2k(t)) for k = 1, 2, 3 be the solution of the discontinu-
ous piecewise linear differential system (3) corresponding to the solu-
tion (x2+, y

2
+, x

2
−) = (u, v, w) = (1, 2,−9/10) of system (25). Then the

time that the solution (x21(t), y
2
1(t)) contained in Q+ needs to reach

the point (0, v) is T1 = 1.5707963267948966.. The time that the so-
lution (x22(t), y

2
2(t)) contained in Q2 needs to reach the point (w, 0) is

T2 = 3.473334629546722.. The time that the solution (x23(t), y
2
3(t)) con-

tained in H needs to reach the point (u, 0) is T3 = 6.283185307179586..

Drawing the two orbits (xjk(t), yjk(t)) for j = 1, 2 and for the times
t ∈ [0, tk] and t ∈ [0, Tk] for k = 1, 2, 3, respectively, we obtain the 2
limit cycles of Figure 3. �

Proof of Proposition 5. We shall prove that the discontinuous piecewise
linear differential system (4) having a center in each of the pieces Q1,
Q2 and H has exactly 3 limit cycles.

Since ± 2i√
1565

, ±4

√
2

1565
i and ±4i are the eigenvalues of the ma-

trices of the three linear differential systems of (4), these systems are
centers.
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The three linear differential systems of (4) have the following first
integrals

H1(x, y) = 1565x2 + y2 − 1185x+ 379y,

H2(x, y) = 21910x2 + 7y2 + 10
√

4430533x+ 5783y,

H3(x, y) = 8764x2 + 2191y2 + (2
√

4430533− 2598)x,

in Q1, Q2 and H, respectively. Then for the discontinuous piecewise
linear differential system (4) the system (6) becomes

(26)

1565x2+ − y2+ − 1185x+ − 379y+ = 0,

21910x2− − 7y2+ + 10
√

4430533x− − 5783y+ = 0,

(x+ − x−)
(
4382x+ + 4382x− +

√
4430533− 1299

)
= 0.

Taking into account that we are only interested in the solutions (x+, y+, x−)
satisfying x+ > 0, x− < 0 and y+ > 0, the unique three solutions of
the previous system are

(x1+, y
1
+, x

1
−) =

(
1,
−3083−

√
4430533

4382
, 1

)
,

(x2+, y
2
+, x

2
−) =

(
2,
−7465−

√
4430533

4382
, 10

)
,

(x3+, y
3
+, x

3
−) =

(
3,
−11847−

√
4430533

4382
, 26

)
.

The first linear differential system of (3) has the solution

x1(t) =

(
u− 237

626

)
cos

(
2t√
1565

)
+

379

2
√

1565
sin

(
2t√
1565

)
+

237

626
,

y1(t) =
1

2

√
5

313
(237− 626u) sin

(
2t√
1565

)
+

379

2
cos

(
2t√
1565

)
− 379

2
,

satisfying the initial conditions x1(0) = u and y1(0) = 0.
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The second linear differential system of (3) has the solution

x2(t) =
1

21910
sin

(
2

√
2

1565
t

)(
√

3130(14v + 5783) cos

(
2

√
2

1565
t

)

−10
√

4430533 sin

(
2

√
2

1565
t

))
,

y2(t) =

(
v +

5783

14

)
cos

(
4

√
2

1565
t

)
− 1

7

√
22152665

626
sin

(
4

√
2

1565
t

)

−5783

14
,

satisfying the initial conditions x2(0) = 0 and y2(0) = v. And the third
linear differential system of (3) has the solution

x3(t) =
1

8764

(
8764w cos(4t) +

(√
4430533− 1299

)
(cos(4t)− 1)

)
,

y3(t) =

(
1299− 8764w −

√
4430533

)
sin(4t)

4382
,

satisfying the initial conditions x3(0) = w and y3(0) = 0.

Now we consider the solution (x1k(t), y1k(t)) for k = 1, 2, 3 of the
discontinuous piecewise linear differential system (4) corresponding to
the solution (x1+, y

1
+, x

1
−) of system (26). Then the time that the so-

lution (x11(t), y
1
1(t)) contained in Q1 needs to reach the point (0, v) is

t1 = 4.10363864680248.. The time that the solution (x12(t), y
1
2(t)) con-

tained in Q2 needs to reach the point (w, 0) is t2 = 1.11762450719575..
The time that the solution (x13(t), y

1
3(t)) contained in H needs to reach

the point (u, 0) is t3 = 0.785398163397448..

Let (x2k(t), y2k(t)) for k = 1, 2, 3 be the solution of the discontinu-
ous piecewise linear differential system (4) corresponding to the so-
lution (x2+, y

2
+, x

2
−) of system (26). Then the time that the solution

(x21(t), y
2
1(t)) contained in Q+ needs to reach the point (0, v) is r1 =

7.93799227264621.. The time that the solution (x22(t), y
2
2(t)) contained

in Q2 needs to reach the point (w, 0) is r2 = 2.02943545009903.. The
time that the solution (x23(t), y

2
3(t)) contained in H needs to reach the

point (u, 0) is r3 = 0.785398163397448..

Let (x3k(t), y3k(t)) for k = 1, 2, 3 be the solution of the discontinu-
ous piecewise linear differential system (4) corresponding to the so-
lution (x3+, y

3
+, x

3
−) = of system (26). Then the time that the solu-

tion (x31(t), y
3
1(t)) contained in Q+ needs to reach the point (0, v) is
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s1 = 11.27688306691738.. The time that the solution (x32(t), y
3
2(t)) con-

tained in Q2 needs to reach the point (w, 0) is s2 = 2.88219547492608..
The time that the solution (x33(t), y

3
3(t)) contained in H needs to reach

the point (u, 0) is s3 = 0.785398163397448..

Drawing the three orbits (xjk(t), yjk(t)) for j = 1, 2, 3 and for the
times t ∈ [0, tk], t ∈ [0, rk] and t ∈ [0, sk] for k = 1, 2, 3, respectively,
we obtain the 3 limit cycles of Figure 4. �
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