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Abstract. In 1977 Lins Neto, de Melo and Pugh [Lectures Notes in
Math. 597, 335–357] conjectured that the classical Liénard system

ẋ = y − F (x), ẏ = −x,

with F (x) a real polynomial of degree n, has at most [(n − 1)/2] limit
cycles, where [·] denotes the integer part function. In this paper we
summarize what is known and what is still open on this conjecture. For
the known results on this conjecture we present a complete proof.

1. Introduction and statement of the main results

The classical Liénard system

(1) ẋ = y − F (x), ẏ = −x,

with F (x) a real polynomial of degree n, has been extensively studied (see
for instance [2, 11, 20, 25, 31, 32, 39, 42, 43], and references therein). In
1977 Lins Neto, de Melo and Pugh [25] proved that there exist systems (1)
of degree n having [(n− 1)/2] limit cycles, and stated the following:

Conjecture System (1) has at most [(n− 1)/2] limit cycles, where n is the

degree of the real polynomial F (x).

Here [x] denotes the integer part function of x.

In this paper we summarize what is known and what is still open on this
conjecture. Moreover for the known results on this conjecture we present a
complete proof.

The conjecture was based in the following result of Lins Neto, de Melo
and Pugh [25]:

Theorem 1. If the real polynomial F (x) has degree n, then there are Liénard

differential systems (1) having at least [(n − 1)/2] limit cycles.
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Here we shall present a shorter and different proof of Theorem 1 from
the one given in [25], this new proof also provides information about the
stability of the limit cycles.

The known results on the conjecture are the following:

Theorem 2. For the Liénard differential system (1) the following state-

ments hold.

(a) For n = 1, 2, system (1) has no limit cycles.

(b) For n = 3, 4, system (1) has at most one limit cycle, and there exist

systems (1) having one limit cycle.

(c) For any n ≥ 6, there exist systems (1) having at least n − 2 limit

cycles.

Theorem 2 says that for n = 1, 2, 3, 4 the conjecture holds, while for n ≥ 6
it does not hold. At this moment only remains to know if the conjecture
holds or not for n = 5.

The result that the conjecture holds for n = 1, 2, 3 already was proved by
Lins Neto, de Melo and Pugh [25]. Here, for n = 1, 2 we shall present the
orignal proofs, but for n = 3 we shall present two new different and shorter
proofs. In 2012, thirty five years after the statement of the conjecture, it
was proved by Li and Llibre [23] that the conjecture also holds for n = 4,
but that proof is long and considers several cases, and the whole paper has
20 pages. We will not repeat this proof.

Statement (c) of Theorem 2 shows that the conjecture is not correct for
n ≥ 6. Through the conjecture remains unchanged for more than thirty
years in 2007 Dumortier, Panazzolo and Roussarie [11] shown that the con-
jecture is not true for n ≥ 7 providing one additional limit cycle to the
ones predicted by the conjecture. In 2011 De Maesschalck and Dumortier
[8] proved that the conjecture is not true for n ≥ 6 providing two additional
limit cycles to the ones predicted by the conjecture. Finally, in 2015 De
Maesschalck and Huzak [9] proved that the number of limit cycles is at least
n − 2 if n ≥ 6, i.e. showing that the Liénard differential systems of degree
n ≥ 6 have essentially at least n/2 more limit cycles than the number con-
jectured by Lins Neto, de Melo and Pugh. Summarizing the above results
we state the following question:

Open problem. What is the maximum number of limit cycles for the

Liénard differential systems (1) when n ≥ 5?

This paper is organized as follows. In section 2 we prove Theorem 1.
In section 3 statement (a) of Theorem 2 is proved. In section 4 we prove
statement (b) for n = 3 of Theorem 2. Finally, the proof of statement (c) is
presented in section 5.
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2. Proof of Theorem 1

The proof presented here of Theorem 1, is shorter, different and provides
information about the kind of stability of the limit cycles, it comes from the
paper [26], see also [27].

For doing the proof of Theorem 1 we need to recall some basic results
from the averaging theory of first order, for a proof of these results see, for
instance, Theorems 11.5 and 11.6 of the book of Verhulst [37].

The averaging theory says: If the function

f(r) =
1

2π

∫ 2π

0
F1(θ, r) dθ

has k simple real roots, 0 < r1 < · · · < rk, then the differential equation in
polar coordinates (r, θ)

(2)
dr

dθ
= εF1(θ, r) + ε2F2(θ, r, ε)

has k limit cycles tending to the circles r = ri for i = 1, . . . , k when ε →
0, where F1 and F2 are periodic of period 2π in θ and C2 smoothness.
Moreover, the limit cycle tending to the circle r = ri is stable if f ′(ri) < 0,
and unstable if f ′(ri) > 0.

Proof of Theorem 1. We shall prove that [(n − 1)/2] is a lower bound for
the maximum number of limit cycles that Liénard polynomial differential
systems (1) of degree n can have. More precisely, we shall show that there
are differential systems of the form

(3) ẋ = y + εF (x), ẏ = −x,

with F (x) = a0+a1x+ . . .+anx
n and an 6= 0 having [(n−1)/2] limit cycles.

As usual polar coordinates (r, θ) are defined as x = r cos θ and y = r sin θ.
In polar coordinates the differential system (3) is

(4) ṙ = ε cos θ F (r cos θ), θ̇ = −1− ε
1

r
sin θ F (r cos θ).

Choosing the variable θ as the new independent variable, system (4) becomes

(5)
dr

dθ
= −ε cos θ F (r cos θ) +O(ε2) = εF1(θ, r) + ε2F2(θ, r, ε).
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Applying the averaging theory described for equation (2) to equation (5),
we obtain

f(r) =
1

2π

∫ 2π

0
F1(θ, r)dθ

= −
1

2π

∫ 2π

0
cos θ F (r cos θ)dθ

= −
1

2π

n∑

i=0

air
i

∫ 2π

0
cosi+1 θdθ

= −
1

2π

[(n−1)/2]∑

j=0

a2j+1r
2j+1

∫ 2π

0
cos2j+2 θdθ

=

[(n−1)/2]∑

j=0

a2j+1b2j+1r
2j+1

where

b2j+1 = −
1

2π

∫ 2π

0
cos2j+2 θdθ 6= 0,

for j = 0, 1, . . . , [(n− 1)/2].

Since the monomials of the polynomial f(r) are r, r3, . . . , r2[(n−1)/2]+1,
and the coefficient a2j+1 in the monomial r2j+1 can be chosen arbitrarily,
we can obtain that the roots of the polynomial f(r) are 0 and ±r1, . . .,
±r[(n−1)/2] with 0 < r1 < . . . < r[(n−1)/2]. Note that all these roots are
simple, i.e. f ′(rk) 6= 0 for k = 1, 2, . . . , [(n − 1)/2]. Therefore the averaging
theory says that for ε sufficiently small the differential equation (5), and
consequently the differential system (3) have [(n − 1)/2] limit cycles near
the circles of radius rk for k = 1, 2, . . . , [(n−1)/2]. This completes the proof
of the theorem. �

3. Proof of statement (a) of Theorem 2

The materials of this section follows from [25]. The first one characterizes
the structure of system (1) at the infinity in the so called Poincaré disc, see
Theorem 1 of [25]. Since it is not a result properly on limit cycles we do not
prove it here.

Theorem 3. Let F = a1x+a2x
2+. . .+anx

n. The topological phase portrait

of system (1) at infinity is given in Fig. 1.

The second one is on the non–existence of periodic orbits and consequently
on limit cycles of system (1), see Proposition 1 of [25] for a proof. We
reproduce here that proof.
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n odd, an > 0 n odd, an < 0

n even, an > 0 n even, an < 0

Figure 1. The topological phase portraits of the Liénard differ-
ential system (1) in a neighborhood of the infinity.

Proposition 4. Let F (x) = E(x)+O(x) with E(x) an even polynomial and

O(x) an odd polynomial. If 0 is the unique root of O(x), then the Liénard

differential system (1) has no periodic orbits.

Proof. Consider the differential system

(6) ẋ = y − E(x), ẏ = −x,

Let ak be the coefficient of the highest order term of E(x). Since this system
is invariant under the symmetry (x, y, t) → (−x, y,−t) the origin of coor-
dinates is a center. Theorem 3 implies that system (6) has the two phase
portraits given in Fig. 2 for n = k even depending on ak > 0 and ak < 0,
respectively.

We study the case ak > 0. For ak < 0 the arguments are completely
same as those of ak > 0. Since each periodic orbit of system (6) intersects
the negative y–axis in a unique point, we define a function H : R2 → R

as follows: for each p ∈ R
2 the value of H(p) is the y–coordinate of the

intersection point of the negative y–axis with the orbit passing through p.
Then H is an analytic function and H(0) = 0 is the unique maximum. By
definition H is a first integral of system (6), so there exists an integrating
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p1p1 p2p2

q1q1

q2q2
ak > 0 ak < 0

Figure 2. The phase portrait of system (6).

factor R(x, y) such that

∂H

∂x
= xR(x, y),

∂H

∂y
= (y − E(x))R(x, y).

Furthermore we have R(x, y) < 0 for (x, y) 6= (0, 0) because the origin is the
unique maximum and H monotonically decreases in x > 0.

Direct calculations on the orbits of the differential system (1) show that

dH

dt

∣∣∣∣
(1)

= −O(x)
∂H

∂x
= −xO(x)R(x, y).

By assumption we get that the derivative of H along an orbit of (1) vanishes
if and only if x = 0, and that for x 6= 0 the derivative is either always positive
or always negative. This implies that system (1) has no periodic orbits. �

Proof of statement (a) of Theorem 2. When n = 1 the differential system
(1) is a linear differential system in R

2, and consequently it has no limit
cycles, because when a linear differential system has a periodic orbit this
is not isolated in the set of all periodic orbits of the system. This proves
statement (a) of Theorem 2 for n = 1.

Assume n = 2. Then, applying Proposition 4 to system (1) we get that
O(x) = a1x. So the unique root of O(x) is x = 0, and by applying Proposi-
tion 4 the system has no limit cycles. This completes the proof of statement
(a) of Theorem 2. �

4. Proof of statement (b) of Theorem 2

We shall use the following well-known result, the Green’s theorem, for a
proof see for instance [29].

Theorem 5. Let γ be a piecewise smooth, simple closed curve in R
2, and

let R be the open region bounded by γ. If P = P (x, y) and Q = Q(x, y)
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are functions defined on an open region containing R and have continuous

partial derivatives there, then
∮

γ
(P dx+Qdy) =

∫∫

R

(
∂Q

∂x
−

∂P

∂y

)
dx dy,

where the integration path along γ is in counterclockwise sense.

The divergence of a C1 differential system

(7) ẋ = P (x, y), ẏ = Q(x, y),

is the function

div(x, y) =
∂P

∂x
+

∂Q

∂y
.

Proposition 6. Let γ = γ(t) = (x(t), y(t)) be a periodic orbit of a C1

differential system (7) of period T . Define

(8) σ =

∫

γ
div(x, y) dt =

∫ T

0
div(x(t), y(t)) dt.

Then, if σ < 0 the periodic orbit γ is a stable limit cycle, and if σ > 0 the

periodic orbit γ is an unstable limit cycle.

For a proof of Proposition 6 see for instance Theorem 1.23 of [10].

The limit cycles for which the value σ defined in (8) is non-zero are called
hyperbolic limit cycles.

First proof of statement (b) of Theorem 2 for n = 3. Set E(x) = a2x
2 and

O(x) = a1x + a3x
3. If a1a3 ≥ 0, we have either a1a3 > 0, or a1 = 0 and

a3 6= 0, or a1 6= 0 and a3 = 0, or a1 = a3 = 0. In the last case system (1)
is symmetric with respect to the y–axis, and the origin of coodinates is a
center, so it has no limit cycles. In the other three cases the odd function
O(x) has the unique root x = 0. Therefore, by Proposition 4, system (1) has
no periodic orbits, and consequently no limit cycles. Hence in what follows
we assume that a1a3 < 0.

For a1a3 < 0 we can assume without loss of generality that a1 > 0 and
a3 < 0, otherwise doing the change of variables (x, y, t) → (−x, y,−t) in
system (1) we obtain the wanted assumptions. Since a1 > 0 the singular
point at the origin of coordinates of the differential system (1) is a stable
focus or node.

Let γ be a periodic solution of the differential system (1), and −a1 −
2a2x− 3a3x

2 is the divergence of that differential system. We consider the
integral of the divergence along the periodic orbit γ as in (8), i.e.

(9)

I = −

∮

γ
(a1 + 2a2x+ 3a3x

2)dt

=

∮

γ

a1 + 2a2x+ 3a3x
2

x
dy,
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where we have used the second equation of the differential system (1). Since
the integral of the first line of the expressions (9) is well defined, also it is
well defined the integral of the second line of (9).

In order to apply the Green’s theorem to the integral of the second line
of (9), we shall split such an integral as limit of two integrals as follows.
We add to the periodic orbit γ the segment S of the y-axis contained in
the region bounded by γ, now we split this segment as limit of two parallel
segments S−(ε) and S+(ε) contained in x < 0 and x > 0 and at a distance
ε > 0 of S, respectively, and such that a piece γ−(ε) of γ contained in x < 0
together with S−(ε) forms an oval O−(ε). Similarly, we consider a piece
γ+(ε) of γ contained in x > 0 such that together with S+(ε) forms another
oval O+(ε), in such a way that the union of these ovals tends to γ ∪S when
ε 7→ 0.

Since the orbit γ and consequently the ovals O±(ε) are run in clockwise,
and later on we want to apply the Green’s Theorem to these ovals, we orient
the orbit γ and both ovals in counterclockwise sense and denote them with

these new orientations by γ̃ and Õ±(ε) respectively. Clearly the two integrals
∮

Õ
−
(ε)

a1 + 2a2x+ 3a3x
2

x
dy and

∮

Õ+(ε)

a1 + 2a2x+ 3a3x
2

x
dy

are well defined, and the integral
∮

γ̃

a1 + 2a2x+ 3a3x
2

x
dy

is the limit when ε 7→ 0 of

(10) Iε =

∮

Õ
−
(ε)

a1 + 2a2x+ 3a3x
2

x
dy +

∮

Õ+(ε)

a1 + 2a2x+ 3a3x
2

x
dy.

Applying the Green’s theorem (Theorem 5) to both integrals of (10) we
obtain that

(11) Iε =

∮

R
−
(ε)

(
−
a1
x2

+ 3a3

)
dx dy +

∮

R+(ε)

(
−
a1
x2

+ 3a3

)
dx dy,

where R±(ε) are the open regions bounded by the ovals Õ±(ε). Now, from
(9), (10), (11), taking into account the change of orientation from γ to γ̃,
and taking the limit of Iε given in (11) when ε 7→ 0 we obtain that

I = −

∫∫

R

(
−
a1
x2

+ 3a3

)
dx dy > 0,

because a1 > 0 > a3, where R is the open region bounded by γ.

By Proposition 6, this implies that all the periodic orbits γ surrounding
the origin of the differential system (1) are hyperbolic and unstable, con-
sequently at most there is one periodic orbit surrounding the origin, and
when it exists is hyperbolic. This completes the proof of statement (b) of
Theorem 2 for n = 3. �
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Our second proof on the uniqueness of limit cycles when n = 3 is again
different from the original one and more simple.

Second proof of statement (b) of Theorem 2 for n = 3. In a similar way to
the first proof we can assume that a1 > 0 and a3 < 0. Under this assumption
the origin of coordinates is stable, and the infinity is also stable, see Fig.
1. Hence it follows from the Poincaré–Bendixson Theorem (see for instance
Corollary 1.30 of [10]) that system (1) has at least one periodic orbit.

First we claim that any periodic orbit of system (1) intersects the straight

lines x = ±
√

−a1/a3. Take

(12) V (x, y) =

{
e−2a2y

(
y − a2x

2 + 1
2a2

)
if a2 6= 0,

x2 + y2 if a2 = 0,

which is the first integral of system (1) with a1 = a3 = 0, i.e. of the
differential system

(13) ẋ = y − a2x
2, ẏ = −x.

Then the derivative of V along an orbit of the differential system (1) is

(14) V̇ =
dV

dt

∣∣∣∣
(1)

= Lx2
(
a1 + a3x

2
)
,

where L = −2 if a2 = 0 or L = 2a2e
−2a2y if a2 6= 0. This shows that V̇ does

not change its sign inside the vertical strip −
√
−a1/a3 ≤ x ≤

√
−a1/a3. On

the other hand V (x, y) is a first integral of system (13), so near the origin
the level curves are closed. Moreover, we get from Fig. 2 and the invariance
of V under the symmetry (x, y) → (−x, y) that there exists a closed level
curve of V which contains the origin in its interior and is tangent to both
straight lines x = ±

√
−a1/a3. Let D be the region enclosed by this closed

level curve of V . Then a periodic orbit cannot intersect D, otherwise there
is a contradiction with the fact that V̇ does not change its sign inside D.
This proves the claim.

Next we prove that system (1) has at most one periodic orbit. By contra-

diction, we assume that Γ̃ and Γ are two different periodic orbits of system

(1) with Γ̃ in the interior of Γ and the origin of coordinates in the interior

of Γ̃. From the last claim we have Fig. 3 which shows the separation of the

two periodic orbits Γ̃ and Γ by the straight lines x = ±
√
−a1/a3.

For the function V (x, y) defined in (12) we have that

Ĩ =

∫

Γ̃

dV (x, y) = 0, I =

∫

Γ

dV (x, y) = 0.

On the other hand we will prove that Ĩ 6= I. This contradiction implies that
system (1) cannot have more than one periodic orbit.
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x

y

x = −
√
−a1

a3
x =

√
−a1

a3

p1

p2p3

p4

p̃1

p̃2p̃3

p̃4

Γ

Γ̃

q1

q2q3

q4

Figure 3. The graph of the two periodic orbits Γ̃ and Γ separated

by the vertical straight lines x = ±
√
−a1

a3

.

From (14) we have

Ĩ =

∫

Γ̃

x2
(
a1 + a3x

2
)
L(y)dt, I =

∫

Γ

x2
(
a1 + a3x

2
)
L(y)dt,

where L(y) = −2 if a2 = 0 or L(y) = 2a2e
−2a2y if a2 6= 0. We claim that

Ĩ < I for a2 > 0, and Ĩ > I for a2 ≤ 0.

We only prove the claim for a2 > 0, the proof for the other case follows
using the same arguments than for the case a2 > 0. From Fig. 3 we have

Γ̃ = ̂̃p1p̃2 ∪ ̂̃p2p̃3 ∪ ̂̃p3p̃4 ∪ ̂̃p4p̃1,
Γ = p̂1q1 ∪ q̂1q2 ∪ q̂2p2 ∪ p̂2p3 ∪ p̂3q3 ∪ q̂3q4 ∪ q̂4p4 ∪ p̂4p1.

On γ = p̂1q1 ∪ q̂2p2 ∪ p̂3q3 ∪ q̂4p4, we have a1 + a3x
2 ≥ 0 with the equality

only at the points p1, p2, p3 and p4. Since L(x, y) > 0, it follows that

I0 =

∫

γ

x2
(
a1 + a3x

2
)
L(x, y)dt > 0.

For convenience to express the integrals, we denote qi = (xi, yi) and p̃i =
(x̃i, ỹi) for i = 1, . . . , 4.

For comparing the integrals on q̂1q2 ⊂ Γ and ̂̃p1p̃2 ⊂ Γ̃ we parameterize
the two orbit arcs as (x1(y), y) and (x̃1(y), y) for y ∈ [y2, y1], respectively.
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Then we have

I1 =

∫

q̂1q2

x2
(
a1 + a3x

2
)
L(y)dt =

y2∫

y1

x2
(
a1 + a3x

2
)
L(y)

−x

∣∣∣∣∣
x=x1(y)

dy

>

y2∫

y1

x2
(
a1 + a3x

2
)
L(y)

−x

∣∣∣∣∣
x=x̃1(y)

dy =

∫

̂̃p1p̃2

x2
(
a1 + a3x

2
)
L(y)dt = Ĩ1,

where we have used y1 > y2, L(y) > 0 and x1(y)(a1+a3x1(y)
2) > x̃1(y)(a1+

a3x̃1(y)
2) > 0 for y ∈ [y2, y1].

Parameterizing the orbit arcs p̂2p3 and ̂̃p2p̃3 by (x, y2(x)) and (x, ỹ2(x))
for x ∈ [x̃3, x̃2] respectively, then we have

I2 =

∫

p̂2p3

x2
(
a1 + a3x

2
)
L(y)dt =

x̃3∫

x̃2

x2
(
a1 + a3x

2
)
L(y)

y − F (x)

∣∣∣∣∣
y=y2(x)

dx

>

x̃3∫

x̃2

x2
(
a1 + a3x

2
)
L(y)

y − F (x)

∣∣∣∣∣
y=ỹ2(x)

dx =

∫

̂̃p2p̃3

x2
(
a1 + a3x

2
)
L(y)dt = Ĩ2,

where we have used a1 + a3x
2 ≤ 0 with equality only at x = x̃2 and x = x̃3,

and y2(x) < ỹ2(x) and L(y2(x)) > L(ỹ2(x)) for x ∈ [x̃3, x̃2].

Similarly we have I3 > Ĩ3 on the orbit arcs q̂3q4 and ̂̃p3p̃4, and I4 > Ĩ4
on the orbit arcs p̂4p1 and ̂̃p4p̃1. Summarizing the above proof we have

I = I0 + I1 + I2 + I3 + I4 > Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 = Ĩ. This proves the claim,
and consequently statement (b) of Theorem 2 for n = 3. �

The proof of statement (b) of Theorem 2 for n = 4 was given in [23]. This
proof considers several cases and contains 20 pages, and since we cannot
provide a new and shorter proof of this statement we do not prove it here.

5. Proof of statement (c) of Theorem 2

Here the proof mainly follows from that of [9] by De Maesschalck and
Huzak, who proved the result using slow divergence integrals.

Consider the slow fast Liénard differential system

(15) ẋ = y − F (x), ẏ = −εx,

with F (x) polynomial and satisfying

(16) F (0) = F ′(0) = 0,
F ′(x)

x
> 0 for x ∈ R.

Under the assumption (16) the function y = F (x) has the graph shown in
Fig. 4. For each x > 0 there exists a unique L(x) < 0 such that F (x) =
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x

y

y = F (x)
Γf
x

Γs
x

L(x) x

Figure 4. Slow fast cycle Γx.

F (L(x)). The piecewise smooth closed curve

Γx = Γs
x∪Γ

f
x, Γs

x = {(s, F (s)) : s ∈ [L(x), x]}, Γf
x = {(s, F (x)) : s ∈ (L(x), x)},

is called a slow–fast cycle, which is formed by the fast orbit Γf
x of the layer

equation

ẋ = y − F (x), ẏ = 0,

and the slow orbit Γs
x of the reduced equation

0 = y − F (x), y′ = −x with y′ =
dy

dτ
and τ = εt.

Define the slow divergence integral associated to Γx

(17) I(x) =

L(x)∫

x

f(s)2

x
ds, x ∈ (0,∞),

where f(x) = F ′(x) with prime the derivative with respect to x.
The next result, due to De Maesschalck and Huzak [9, Theorem 2], charac-

terizes the number of limit cycles of the classical Liénard differential system
(15) via slow divergence integral.

Theorem 7. Under the condition (16), if the slow divergence integral I(x)
has exactly k simple zeros, then there exists a smooth function λ = λ(ε) with
λ(0) = 0 such that the perturbed system

(18) ẋ = y − F (x), ẏ = ε(λ(ε) − x),

has exactly k + 1 limit cycles provided that ε > 0 sufficiently small, which

are all hyperbolic.

For computing the slow divergence integral I(x), set

(19) F (x) = Fe(x) + δFo(x),

where Fe is even and Fo is odd, and δ is a small parameter. In [9] there
obtained an asymptotic expression of I as follows.
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Proposition 8. The slow divergence integral I(x) associated to the slow–

fast cycle Γx with F (x) of the form (19) has the asymptotic expression

(20) I(x) = 2δI1(x) +O(δ2), I1(x) =

∫ x

0

(
f ′

e(s)Fo(s)− fe(s)F
′

o(s)
)
ds,

with fe(x) = F ′
e(x)/x.

Now we apply Theorem 7 and Proposition 8 to prove statement (c) of
Theorem 2. The proof will be manipulated by induction.

Step 1: n = 6. Choose

Fe(x) =

∫ x

0
sfe(s)ds, fe(x) = 1 + a1x

2 + a2x
4,

Fo(x) = b1x
3 + b2x

5,

with (a1, a2) = (−3.1, 2.7) and (b1, b2) = (−0.4, 1). Then

I1(x) = 0.4x3 − 1.248x5 + 1.17429x7 − 0.3x9.

It has exactly 3 positive zeros x1 = 0.824803, x2 = 0.898793, x3 = 1.55761.
So for sufficiently small δ > 0 I(x) will also have exactly 3 positive zeros.
It follows from Theorem 7 that the classical Liénard differential system of
degree 6 could have at least 4 limit cycles.

Step 2: n > 6 even. For any integer k ≥ 3, we write the Liénard differential
system (15) of degree 2k in the form

F (x) = F (k)
e (x) + δF (k)

o (x),

with F
(k)
o odd of degree 2k − 1 and F

(k)
e even of degree 2k and F

(k)
e (x) =∫ x

0 sfk
e (s)ds, where f

(k)
e is a polynomial of degree 2k − 2. Correspondingly

we have

I1(x) := I
(k)
1 (x) =

∫ x

0

(
f (k)
e

′

(s)F (k)
o (s)− f (k)

e (s)F (k)
o

′

(s)
)
ds.

For applying induction through perturbation and using Step 1, we assume

that I
(k)
1 (x) has 2k − 3 simple zeros and f

(k)
e (x) > 0 for x ∈ R, and so the

classical Liénard differential system (15) of degree n = 2k has at least n− 2
hyperbolic limit cycles.

Set

F (k+1)
e (x) =

∫ x

0
sf (k+1)

e (s)ds, f (k+1)
e (x) = f (k)

e (x) + 10akx
2kµ2,

F (k+1)
o (x) = F (k)

o (x) + bkx
2k+1µ2,

where ak is the coefficient of x2k−2 in f
(k)
e and bk is the coefficient of x2k−1

in f
(k)
o . We have

I
(k+1)
1 (x) =

∫ x

0

(
f (k+1)
e

′

(s)F (k+1)
o (s)− f (k+1)

e (s)F (k+1)
o

′

(s)
)
ds,
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which has 2k − 3 simple zeros when µ = 0 by the inductive assumption.

Consequently I
(k+1)
1 (x) has 2k−3 simple zeroes near the 2k−3 simple zeroes

of I
(k)
1 (x) for µ > 0 sufficiently small. In addition, I

(k+1)
1 (x) has other two

simple zeros appearing in O(1/µ) range. Indeed, some calculations show
that

I
(k+1)
1 (x/µ) =

∫ x/µ

0

(
f (k+1)
e

′

(s)F (k+1)
o (s)− f (k+1)

e (s)F (k+1)
o

′

(s)
)
ds

= µ−4k+3akbk

(
J
(k+1)
1 (x) +O(µ2)

)
,

where

J
(k+1)
1 (x) =

∫ x

0
(A′

k+1(s)Bk+1(s)−Ak+1(s)B
′

k+1(s))ds,

with

Ak+1(x) = x2k−2 + 10x2k, Bk+1(x) = x2k−1 + x2k+1.

It is easy to check that J
(k+1)
1 (x) has exactly 2 positive zeroes, which are

simple. Consequently J
(k+1)
1 (x)+O(µ2) has two simple positive zeroes. This

proves that I
(k+1)
1 (x) has two simple zeroes in the range O(1/µ), and so has

(2k − 3) + 2 = 2k − 1 positive simple zeroes. By Theorem 7 system (15) of
degree n = 2k + 2 with

F (x) = F (k+1)
e (x) + δF (k+1)

o (x),

has 2k hyperbolic limit cycles.
By induction we complete the proof of statement (c) of Theorem 2 for

any even degree n ≥ 6.

Step 3: n > 6 odd. Set n = 2k + 1 with k > 3. By the proof of Step 2 there
exists a polynomial Liénard differential system of degree 2k of the form

(21) ẋ = y − F (x), ẏ = ε0(λ0 − x),

which has 2k− 2 hyperbolic limit cycles. Since these limit cycles are nested
and hyperbolic, the largest one should be either stable or unstable, which
can be assumed without loss of generality to be unstable. We consider the
perturbation of system (21)

(22) ẋ = y − (F (x) + ρx2k+1), ẏ = ε0(λ0 − x),

with ρ ≥ 0 small. Note that the 2k − 2 hyperbolic limit cycles of system
(22) when ρ = 0 persist for ρ > 0 sufficiently small. In addition, the infinity
of system (22) is a repeller when ρ > 0, and system (22) has a unique finite
singularity. By the Poincaré–Bendixson annulus theorem system (22) has
an extra limit cycle beside the 2k−2 limit cycles. Hence there exist classical
Liénard differential systems (15) of degree n which have n − 2 limit cycles.
This proves statement (c) of Theorem 2 for any odd degree n ≥ 6, and
consequently statement (c) of Theorem 2. �
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