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In this work we are mainly interested in the planar polynomial differential

systems or simply polynomial systems of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P and Q are real polynomials in x and y and the maximum degree

of P and Q is m.

Certainly one of the most celebrated problems in the qualitative theory

of dynamical systems on the plane is the Hilbert’s 16th problem concerning

limit cycles. To be more precise the second part of this problem asks: What

is the maximum number of limit cycles of any planar polynomial differential

system of degree at most m? Recall that a limit cycle of system (1) is a closed

orbit isolated in the set of all closed orbits of the system. The progress in this

particular area of mathematics is very slow. Even the existence of a uniform

upper bound of limit cycles in function of the degree is not solved. In other

words the answer to the following question (see [6]) is not yet known: Is

there a bound K on the number of limit cycles of system (1) of the form

K ≤ mq where m is the maximum of the degrees of P and Q and q is a

universal constant? Until now mathematicians have not been able to answer

it even for m = 2.

A classical way to obtain limit cycles is perturbing the periodic orbits

of a center. Most of the methods are based on the Poincaré return map,

the Poincaré-Melnikov integral and the Abelian integral. In fact in the

plane the second and the third method are essentially equivalent. Many

authors have studied the limit cycles which bifurcate from periodic orbits

of a center [11, 17, 21]. For example, Chicone and Jacobs in [9] studied the

linear isochronous center and four families of quadratic isochronous centers

in the so called Sibirsky form and their perturbations inside the class of all
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quadratic polynomial differential systems. They developed techniques for

treating the bifurcations of all orders, and applied them to proving the fol-

lowing result. For the linear isochronous center the maximum number of

continuous families of limit cycles which can emerge is three, and for a class

of nonlinear isochronous center, at most one continuous family of limit cycles

can emerge, whereas for all other nonlinear isochronous centers, at most two

continuous families of limit cycles can emerge. Moreover, they proved that

for each isochronous center of these classes there are small perturbations

such that the indicated maximum number of continuous families of limit

cycles can be made to emerge from a corresponding number of arbitrar-

ily prescribed periodic orbits within the period annulus of the isochronous

center.

The perturbations of the quadratic isochronous systems inside the class

of all polynomials were studied by Chengzhi Li, Weigu Li, J. Llibre and

Zhifen Zhang in [13]. The technique that they used is a classical one. It

consists in writing the non–Hamiltonian quadratic isochronous center in a

Hamiltonian form, multiplying the non–Hamiltonian system by an integrat-

ing factor, and then to use the method based on computing the zeros of

an Abelian integral to determine the limit cycles bifurcating from periodic

orbits of the center. They use Green Theorem, to transform the Abelian

integral to a double integral in order to simplify the calculations.

In [14] the same authors studied the perturbations of cubic polynomial

differential systems having a rational first integral of degree 2 whose phase

portraits correspond to the phase portraits P1, P3 and P4 of Figure 2.1.

These systems were denoted in [14] by (B), (A) and (C), respectively. They

proved that all the centers of these systems are reversible and isochronous,

see [14, p.314]. One of their main results provides upper bounds for the

maximum number of isolated zeros of the associated Abelian integral of

systems (A), (B) and (C) when they are perturbed inside the class of all

polynomial differential systems of degree three. To be more precise they

proved that if we perturb the three cubic reversible isochronous systems (A),

(B) and (C) inside the class of all polynomial differential systems of degree

three an upper bound for the maximum number of zeros of the Abelian

integrals associated with these systems is 5, 4 and 4, respectively.

In Chapter 2 we complete their result by giving lower bounds for the

maximum number of zeros of the associated Abelian integrals. The following
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theorem is one of the main results of this chapter.

Theorem 2.2. When we perturb the three cubic reversible isochronous sys-

tems (A), (B) and (C) inside the class of all polynomial differential systems

of degree three, a lower bound for the maximum number of zeros of the

Abelian integrals associated to these systems is 4, 4 and 3, respectively.

The proof of Theorem 2.2 is based on the explicit calculation of the asso-

ciated Abelian integrals and then studying their zeros by applying Lemma

2.13. In addition, we study the degenerate system S4, which can be thought

of as a limit case of system S3. For the definitions of systems S1–S6 see

page 18 of the thesis. It has a line of singular points which appears when

four invariant straight lines of system S3 coincide as shown in Chapter 3

(see config. 28 in Figure ??). For systems S4 and S2 we also give a lower

bound for the maximum number of isolated zeros of Abelian integral when

they are perturbed inside the class of cubic polynomial differential systems.

Theorem 2.3. When we perturb systems S2 and S4 inside the class of all

polynomial systems of degree three, a lower bound for the maximum num-

ber of zeros of the Abelian integrals associated to these systems is 4 and 3,

respectively.

The results of Chapter 2 are contained in:

J. Llibre and A. Mahdi, Lower bound for the number of zeros of

Abelian integral for some cubic isochronous centers, preprint 2008.

Another major problem in the qualitative theory of differential equations

in dimension two is to give, for a concrete family of differential systems, a

topological classification of the phase portraits for all the systems in the

family. Roughly speaking, we say that two planar differential systems are

topologically equivalent if there exists a homeomorphism of the plane which

maps the solution curves of one system onto the solution curves of the other.

Thus we wish to partition the parameter space corresponding to the family

of systems under consideration into subsets having the property that the

phase portraits of any two elements of the family corresponding to elements

of the same subset are topologically equivalent.

In a series of remarkable works Markus [18], Neumann [19] and Peixoto

[20] considered the topological classification problem for general differential

systems on the plane. They identified certain key orbits called separatrices

that divide the plane into connected components called canonical regions.
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They introduced the notion of the separatrix configuration of a planar dif-

ferential system (the union of all separatrices plus one representative orbit

of each canonical region) and proved that two planar differential systems are

topologically equivalent if and only if there exists a homeomorphism sending

the separatrix configuration of one system onto the separatrix configuration

of the other. Their results gave a good starting point for obtaining all

topologically equivalent classes for particular families of planar differential

systems.

The study of global phase portraits has been carried out for many years.

One of the oldest papers on the subject was published in 1904 by W. Büchel,

Zur Topologie der durch eine gewhnliche Differentialgleichung erster Ord-

nung und ersten Grades definierten Kurvenschar. (On the topology of the

curves defined by an ordinary differential equation of the first order and the

first degree), Mitteil. der Math. Gesellsch. in Hamburg, Band IV, 4, 33-68.

(25 figures). The author states the possible combinations in number and

character of singular points in the finite part of the plane and at infinity.

The list of mathematicians that contributed to the topological classification

of quadratic systems is very long and includes: J.C. Artes, A. Gasull, J. Lli-

bre, N. Vulpe, D. Schlomiuk, K.S. Sibirsky and many others. For a long list

of publications on the qualitative theory of quadratic systems of differential

equations in the plane see [22]. On the other hand relatively little was done

regarding topological classification of cubic systems.

In Chapter 3 we give all the topologically distinct phase portraits of

cubic systems having a rational first integral of degree two. For a planar

differential system or a vector field defined on the plane R
2 the existence of a

first integral completely determines its phase portrait. Since for such vector

fields the notion of integrability is based on the existence of a first integral,

the following natural question arises: Given a vector field on R
2, how to

recognize if this vector field has a first integral? One of the easiest planar

vector fields having a first integral are the Hamiltonian ones. The integrable

planar vector fields which are not Hamiltonian are, in general, very difficult

to detect. In [3] L. Cairó and J. Llibre classified all quadratic systems having

a rational first integral of degree two. We will consider similar problem for

cubic systems. To be more precise one of the main results of Chapter 3 is

the following.

Theorem 3.1. The phase portrait of a non–degenerate planar cubic poly-
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nomial differential system with a rational first integral of degree 2 is topo-

logically equivalent to one of the 27 phase portraits described in Figure 3.1.

Furthermore we will show that a real cubic system having a rational first

integral of degree two has either a finite number of invariant straight lines,

real or complex, of total multiplicity 6, or it has infinitely many of them. We

also study the configuration of the invariant straight lines that these kind of

systems exhibit. If at least four invariant straight lines coincide the system

becomes degenerate. The results of Chapter 3 form the following article:

J. Llibre, A. Mahdi and N. Vulpe, Phase portraits and invariant straight

lines of cubic polynomial vector fields having a quadratic rational first inte-

gral, preprint.

In Chapter 4 we study the global dynamics of all planar polynomial dif-

ferential systems having all their orbits imbedded in conics. To be more pre-

cise we say that system (1) has the orbit γ imbedded in a conic if there exists

a polynomial of degree two F (x, y) ∈ R[x, y] such that γ ⊂ {F (x, y) = 0}.

Although real conics are very simple curves and there are only nine different

types of them up to an affine transformation, the differential polynomial

systems having their orbits contained in conics give rise to a rich dynamics

as it is shown in the following result.

Theorem 4.1. The phase portrait of a real non–degenerate planar polyno-

mial differential system having its orbits imbedded in conics is topologically

equivalent to one of the 49 phase portraits given in Figure 4.1.

All quadratic polynomial differential systems having a rational first in-

tegral of degree two were classified in [3] and [1]. These systems have their

orbits contained in conics. The cubic polynomial systems of Lotka-Voltera

type having a rational first integral of degree two were characterized in [2].

Finally all cubic differential system having a rational first integral of degree

two were classified in [15]. All these results are particular cases of Theorem

4.1.

Our proof of Theorem 4.1 is based on the real affine classification of

the pencils of conics. A pencil of conics is a 1-dimensional linear system

of plane curves of degree two. Given two distinct conics F = 0 and G =

0 there is a unique pencil containing them, formed by all conics of the

pencil λF + µG = 0, (λ : µ) ∈ P
1, where P

n denotes the n–dimensional

projective space. Thus a pencil of conics can be identified with a line in
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the space P
5 which parameterizes all conics. There are two main types of

pencils, non–degenerate and degenerate, according to whether they contain

non–degenerate conics or not. The projective classification of the pencils

of conics, both over the real or the complex numbers can be found in the

literature on projective geometry, see for instance [12]. We shall be dealing

with pencils of affine conics defined over the real numbers. For each affine

real non–degenerate equisingularity type we shall give normal forms. Two

projective pencils are real equisingular if there is a bijection between the

sets of real singular elements (real base points, real singular points and real

components of fibers) preserving the types.

The degree of a non–degenerate planar polynomial differential system

having its orbits embedded in conics is at most three. This is a corollary of

our following result.

Theorem 4.5. Assume that system (1) is non–degenerate and all its orbits

are contained in algebraic curves of degree d. Then the degree of system (1)

is at most 2d − 1.

The results of Chapter 4 are contained in:

J. Llibre, A. Mahdi and J. Roé, The geometry of the real planar

polynomial differential systems having their orbits imbedded in conics, preprint.

Chapter 5 deals with the integrable polynomial vector fields X = (P,Q)

defined either over C
2 or R

2. The main concern of this chapter is a rela-

tionship between the form of the first integral and its integrating factor,

or inverse integrating factor. One of the main open problems in the qual-

itative theory of planar polynomial vector fields X is to characterize the

integrable ones. One way to study integrable vector fields is through the

inverse integrating factor V , for more details see [4]. Moreover, if X is real

and V : U → R is an inverse integrating factor of X on the open subset U

of R
2, then V becomes very important because {V = 0} contains the limit

cycles of X which are in U , see [10, 16]. Moreover, if V is polynomial, then

it is defined on the whole R
2 and consequently we can control all limit cycles

of X , see for instance [16].

There are several known relationships between the nature of the first

integrals and its associated inverse integrating factors. If, for example, X has

a Liouvillian first integral, then it has a Darboux inverse integrating factor.

If X has a Darboux first integral, then it has a rational inverse integrating
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factor, and if X has a polynomial first integral, then it has a polynomial

integrating factor. The proof of the following proposition will be given in

Chapter 5 and states the missing relationship between the polynomial first

integral and the polynomial inverse integrating factor for polynomial vector

fields X .

Proposition 5.2. If X has a polynomial first integral, then it has a poly-

nomial inverse integrating factor.

Looking at the relationship between a first integral and the inverse inte-

grating factor of polynomial vector field a natural question arises: Suppose

that the polynomial vector field X has a rational first integral. When does

X have a polynomial inverse integrating factor? Using the notion of critical

remarkable values these vector fields were characterized by J. Chavarriga,

H. Giacomini, J. Giné and J. Llibre in [5].

Let H = f/g be a rational first integral of X . we say that c ∈ C ∪ {∞}

is a remarkable value of H if f + cg is a reducible polynomial in C[x, y].

Note that for all c ∈ C the curve f + cg = 0 is an invariant algebraic curve.

Here, if c = ∞, then f + cg denotes g. In [5] it is proved that there are

finitely many remarkable values for a given rational first integral H. Now

suppose that c ∈ C is a remarkable value of a rational first integral H and

that uα1

1
· · · uαr

r is the factorization of the polynomial f + cg into irreducible

factors in C[x, y]. If some of the αi for i = 1, . . . , r is larger than 1, then we

say (following again Poincaré) that c is a critical remarkable value of H, and

that ui = 0 having αi > 1 is a critical remarkable invariant algebraic curve

of X with exponent αi. They proved the following. Suppose that H = f/g

is a canonical rational first integral of X and it does not have polynomial

first integrals. Canonicity means that f and g have the same degree and the

degree of H is minimal among all the degrees of the rational first integral

of the system. Then X has a polynomial inverse integrating factor if and

only if H has at most two critical remarkable values. As far as we know

this statement was not complete in the sense that there were no examples of

polynomial vector fields satisfying its assumptions and without a polynomial

inverse integrating factor. In what follows we provide such an example.

Proposition 5.4. The polynomial vector field

X (x, y) = 2x(5 + 30x + 40x2 + 8y2)
∂

∂x
+ y(5 + 44x + 80x2 + 16y2)

∂

∂y
,
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has a rational first integral, and has neither a polynomial first integral, nor

a polynomial inverse integrating factor.

Most of the known examples of polynomial differential systems having

an isochronous center admit a polynomial inverse integrating factor (see for

example [7]). We can ask if this is always the case. In another words: Does

a polynomial differential system with an isochronous center always admits a

polynomial inverse integrating factor? We will show that the answer to this

question is negative. Even uniformly isochronous systems that is, systems

with an isochronous center whose trajectories rotate with constant angular

velocity do not always admit a polynomial inverse integrating factor. The

results of Chapter 5 have been published in the paper:

A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrat-

ing factors for polynomial vector fields, Discrete and Continuous Dynamical

Systems 17 (2007), 387–395.

In Chapter 6 we present a result on the number of singular points of the

radial projection of polynomial gradient vector fields of R
3 on the sphere S

2.

To be more precise let r = (x, y, z) and we consider the radial projection of

the homogeneous polynomial gradient vector field

∇rH(r) = (Hx,Hy,Hz)

of degree m − 1 in R
3 over the 2–dimensional sphere S

2 = {(x, y, z) ∈ R
3 :

x2 + y2 + z2 = 1}; i.e. we consider the polynomial vector field X of degree

m + 1 on S
2 defined by

X (r) = ∇rH(r) − 〈r,∇rH(r)〉r (2)

for r ∈ S
2. Here 〈r, s〉 denotes the inner product of the two 3–dimensional

vectors r and s. Since X (r) for every r ∈ S
2 is a vector of the tangent

plane to S
2 at the point r, X is a vector field on S

2. In [8, p.55] C. Chicone

asked the following question. What is the number of singular points of the

polynomial vector field X on S
2? The next theorem provides the answer to

Chicone’s question.

Proposition 6.1. Let H be a homogeneous polynomial of degree m ≥ 1 in

the variables (x, y, z). If the polynomial vector field X has not a continuous

of singular points, then it has at most (m−1)2 +(m−1)+1 pairs of diame-
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trally opposite singular points on S
2 taking into account their multiplicities.

This result is the first step toward the solution of the following problem.

Let H denote the space of homogeneous cubic polynomials in three variables

and let A denote the subset of H consisting of those elements whose gra-

dients (orthogonally) project to a vector field on the unit sphere such that

the corresponding dynamical system has no saddle connections. Prove or

disprove that A is a dense subset of H with the coefficient topology.

The results of Chapter 6 have been published in the article:

J. Llibre and A. Mahdi, On the number of singular points of the

radial projection of polynomial gradient vector fields of R
3 on the sphere S

2,

Communications on Applied Nonlinear Analysis 14 (2007), 77–84.
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