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Abstract

We study the existence of linear and non-linear conservation laws in biochemical

reaction networks with mass-action kinetics. It is straightforward to identify

the linear conservation laws as they are related to the left null-space of the

stoichiometry matrix. The non-linear conservation laws are much more difficult

to study and so far have rarely been considered in the context of mass-action

reaction networks. Our aim is to give structural conditions – that is, parameter

independent conditions, on a reaction network to guarantee the existence of non-

linear conservation laws of some type. We do so by means of Darboux theory

of integrability. We show that F (x) = xi is a Darboux polynomial if and only

if the reaction network fulfil a certain structural condition. Furthermore, this

allows us to conclude that a specific type of a non-linear first integral (similar

to that of the Lotka-Volterra system) only exists if the reaction network fulfils

the same structural condition. The existence of such a first integral generally

implies that the system is persistent and has stable steady states. We illustrate

our results by examples.
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1. Introduction

Typical models of biochemical reaction networks are systems of polynomial

ordinary differential equations (ODEs). Generally, these ODE systems are dif-

ficult to solve and analyse, and little can be said about their solutions, exactly

or qualitatively, except in special cases [8, 24]. However, in many applications5

it is important to know whether the solutions oscillate, are attracted towards

steady states, or are persistent.

To study the dynamics, a potentially promising strategy would be to look for

first integrals (i.e. conservation laws). First integrals are quantities depending on

the variables of the system, that are conserved over time. Typically, differential10

systems (equivalently vector fields) do not admit first integrals, however, when

they do, and can be found, the benefit can be significant [24, 15, 3]. In connection

with reaction networks, first integrals have been used to demonstrate oscillatory

behaviour [24], chaos [23] and Turing instability [22] in particular examples.

The ODE system of a reaction network is composed of two parts: a stoi-15

chiometric (structural) representation of the reactions and a specification of the

rates by which the reactions occur. Only the second part is parameter depen-

dent. Our aim is twofold. First of all, we are interested in finding sufficient

and/or necessary structural conditions – that is, conditions that are indepen-

dent of the parameters – for the existence of non-linear first integrals. Secondly,20

for a given reaction network, we ask, what can we learn about the qualitative

behaviour of the solutions from the existence of non-linear first integrals? We

make use of Darboux theory of integrability [4, 5], which is a powerful tool in

determining the non-linear first integrals [18, 16].

In relation to the first aim, we show that F (x) = xi is a Darboux polynomial25

(see Definition 11) if and only if the reaction network fulfils a certain structural

condition on the form of the reactions. This in turn allows us to conclude that

a particular type of non-linear first integral only exists for a class of reaction

networks defined by the structural condition. This class contains a standard

reaction network-representation of the Lotka-Volterra model. We find this re-30
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sult appealing because the condition is easy to check, simply by looking at the

reactions. However, the condition is only necessary and not sufficient for the

existence of a first integral of the desired form. We show this by example and

demonstrate the first integral might not exist at all, or might exist for some or

all parameter values. For the second aim, we show that the existence of a first35

integral of the desired form for a conservative system implies that it is persistent

and has a unique non-attracting, but stable, steady state in each stoichiometric

compatibility class (these classes are determined by linear first integrals).

The use of linear first integrals in reaction network theory is common. With

some exceptions the non-linear first integrals have rarely been considered [1, 17,40

20]. Quadratic first integrals have been characterised in [20]. Ideally, one would

in general like to give conditions for the existence of first integrals of certain

forms, irrespectively of the reaction rate constants. Our results might be seen

as a first step in this direction. Also our results are in this sense analogous to

other results in reaction network theory, for example, the deficiency zero and45

one theorems that give structural conditions for the existence of steady states

[8], and the persistence criteria given in [2].

It is generally difficult to establish the existence or non-existence of Darboux

first integrals. This typically depends on the reaction rate constants in intricate

ways [12, 13, 17, 11]. We hope that this paper would inspire further work50

to characterise the existence and form of non-linear first integrals for reaction

networks. As our results show, non-linear first integrals might be useful to study

qualitative aspects of the dynamics.

2. Reaction networks with mass-action kinetics

Here we define a reaction network and show how to construct a system of55

polynomial ODEs describing the evolution of the species concentrations.

2.1. Reaction networks

Denote by N the set of non-negative integers, and by R>0 the set of pos-

itive (non-negative) real numbers. For x = (x1, . . . , xn) ∈ Rn>0 and α =
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(α1, . . . , αn) ∈ Rn, we let xα =
∏n
i=1 x

αi
i . If αi > 0 for all i = 1, . . . , n, we60

allow x ∈ Rn≥0. In the following, Ω denote an open set of Rn.

Definition 1 (Network). A network is a triplet (S, C,R) such that:

(a) S = {A1, . . . , An} has n elements, called species.

(b) C has p elements, called complexes, being a linear combination of species,

y = α1A1 + . . .+ αnAn ∈ C, with αi ∈ N, i = 1, . . . , n.65

(c) R has m elements, called reactions, and each reaction r ∈ R is an ordered

pair of distinct complexes, written y → y′, and therefore R ⊂ C × C.

In the following we assume that the sets S, C, and R are ordered. It is

common to assume that C only contains complexes which are part of reactions,

and S only contains species which are part of complexes. In that case, S and C70

are determined by R.

Example 1 (Volpert’s network [24]). Consider the following reaction network

A1 +A2 −−→ 2A2, A2 +A3 −−→ 2A3, A3 +A1 −−→ 2A1 (1)

There are six complexes, C = {A1 + A2, 2A2, A2 + A3, 2A3, A3 + A1, 2A1} and

three species, S = {A1, A2, A3}.

A reaction network (S, C,R) has a natural representation in terms of a (di-

rected) graph, as in Example 1, where the vertices are the complexes and the75

(directed) edges between vertices are the reactions. The connected components

of the undirected graph are called linkage classes and the strongly connected

components of the directed graph are called terminal linkage classes. In Exam-

ple 1 there are three linkage classes (e.g.,A1 + A2 → 2A2) and three terminal

linkage classes (e.g., 2A2).80

2.2. Stoichiometric subspace and compatibility class

Consider a reaction network (S, C,R). Identify each species Ai with the

i-th unit vector in Nn, that is, the vector with one in the i-th entry and zero
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elsewhere. Thus, a complex y = α1A1+. . .+αnAn is identified with the element

(α1, . . . , αn) of Rn.85

For the j-th reaction yj → y′j , we let γj = y′j−yj ∈ Rm be the net production

of species in the reaction. The vector γj is referred to as the j-th reaction vector.

Definition 2 (Stoichiometry matrix). The stoichiometry matrix Γ is define

as the n × m matrix whose columns are the reaction vectors, that is, Γ =

(γ1, γ2, . . . , γm).90

Definition 3 (Stoichiometric subspace). The stoichiometric subspace is the

vector subspace S ⊆ Rn defined as S = span{γ1, . . . , γm}.

Definition 4 (Stoichiometric compatibility class). The stoichiometric compat-

ibility classes are the affine vector subspaces in Rn defined by (x + S) ∩ Rn≥0,

where x ∈ Rn≥0.95

2.3. Reaction networks with mass-action kinetics

Let (S, C,R) be a reaction network. Denote by xi the concentration of the

species Ai and the vector of species concentrations by x(t) = (x1(t), . . . , xn(t)).

Before we show how to describe the time evolution of the vector of concentra-

tions, we need some preliminary definitions and notation.100

A rate function for a reaction yj → y′j , j = 1, . . . ,m, is a function vj(x) :

Rn≥0 → R≥0 that describes the instantaneous change in the species composition

x = (x1, . . . , xn) due to this reaction.

A kinetics V is an assignment to each reaction yj → y′j , j = 1, . . . ,m, of a

rate function vj(x) : Rn≥0 → R≥0. We can think of V as a set of rate functions105

indexed by the elements of the reaction set, that is V = {vj(x) : j = 1, . . . ,m}.

Let v(x) = (v1(x), . . . , vm(x)).

Definition 5 (ODE system of a reaction network). Let (S, C,R) be a reaction

network. The evolution of the concentrations x(t) = (x1(t), . . . , xn(t)) under

the kinetics V is given by the ODE system

dx

dt
=

m∑
j=1

vj(x)γj = Γv(x), and x(0) = x0 ∈ Rn≥0, (2)
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where v(x) = (v1(x), . . . , vm(x)) is the vector of the rate functions.

It follows from (2) that the evolution of the species concentrations is confined

to the stoichiometric subspace

x(t) ∈ (x0 + S) ∩ Rn≥0, where x(0) = x0.

Non-negativity of the solutions follows from the assumption that the rate func-

tions are non-negative, in particular at the boundary of Rn≥0 [21].110

We are particularly interested in mass-action kinetics.

Definition 6 (Mass-action kinetics). A kinetics is called mass-action if the rate

functions take the form

vκ,j(x) = kj

n∏
i=1

x
αji

i = kjx
yj , (3)

where yj = (αj1, . . . , αjn), and kj > 0 is a positive reaction rate constant. We

denote the vector of reaction rate constants by κ = (k1, . . . , km).

Example 2 (Volpert’s network, part 2). Consider the reaction network given in

(1) with the mass-action kinetics. The corresponding system of ODEs is given

by

dx

dt
= Γvκ(x) =


k3x1x3 − k1x1x2
k1x1x2 − k2x2x3
k2x2x3 − k3x1x3

 (4)

where

Γ =


−1 0 1

1 −1 0

0 1 −1

 , and vκ(x) =


k1x1x2

k2x2x3

k3x1x3

 .
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2.4. Linear conservation laws

Proposition 7. Let (2) be an ODE system for a reaction network. For any

row vector ω = (ω1 ω2 . . . ωm) such that ω Γ = 0, the quantity

H =

m∑
j=1

ωjxj

is a linear conservation law. Moreover, there are at least s = n − rank(Γ)115

independent linear conservation laws.

Proof. We have
dH

dt
= ω

dx

dt
= ω Γv(x) = 0.

The left kernel of Γ has dimension s, hence there must be at least s independent

linear conservation laws.

Remark 8. A linear conservation law is a linear first integral, see Definition 10

below.120

Consider the reaction network

A1
k1−−→ A2, A1

k2−−→ A3. (5)

In this case, s = 1 as H1 = x1 + x2 + x3 is a conserved quantity corresponding

to the vector ω1 = (1, 1, 1). It is easy to see that H2 = k2x2 − k1x3 is another

linear conservation law for all κ = (k1, k2) ∈ R2
>0, although ω2 = (0, k2,−k1) is

not in the kernel of Γ. The two vectors ω1 and ω2 are linearly independent for

all reaction rate constants.125

Proposition 9 ([10]). Let Sκ = span(Γvκ(Rn≥0)) ⊆ S for a reaction network

with mass-action kinetics, as in (3). If the number of linkage classes equals

the number of terminal linkage classes, then Sκ = S and the number of linear

conservation laws is s = n− rank(Γ).

In (5), there is one linkage class but two terminal linkage classes (A1, and

A2), hence the proposition does not apply. As a second example, consider the
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reaction network

A1
k1−−→ 2A1, A1

k2−−→ 0. (6)

The function H = x1 is a linear conservation law if k1 = k2, but ω = (1) is not130

in the left kernel of Γ, that is, ω is not of the form in Proposition 7. Indeed

s = 0. If k1 6= k2 then there are no linear conservation laws. Indeed, S(k,k) = R,

while S(k1,k2) = {0} for k1 6= k2.

Example 2 (see also Example 1) has three linkage classes and three terminal

linkage classes, and hence there is only s = 1 conservation law for all κ, namely135

H = x1 + x2 + x3.

3. Non-linear conservation laws via Darboux theory

The theory developed by Darboux [4, 5] is one of the most useful tools for

identifying the first integrals of polynomial differential equations. Here our aim

is to review the main elements of the Darboux method and subsequently show140

how it can be applied to search for nontrivial (non-linear) conservation laws of

the reaction networks with mass-action kinetics.

We start by considering an n-dimensional polynomial differential system

dx1
dt

= P1(x), . . . ,
dxn
dt

= Pn(x), (7)

where x = (x1, . . . , xn) ∈ Rn and Pi(x) ∈ R[x] are polynomials in x. Whenever

convenient we omit the argument x in Pi = Pi(x) and other functions of x.

For any system of differential equations (7) we define a derivation by

D := P1
∂

∂x1
+ . . .+ Pn

∂

∂xn
. (8)

Let

D(H) := P1
∂H

∂x1
+ · · ·+ Pn

∂H

∂xn

be the derivation evaluated at a C1-function H : Ω→ R. In the examples, Ω can145

be taken to be Rn>0.
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The degree of the system (7), or of the derivation (8), is defined as

d = max{deg(P1), . . . ,deg(Pn)},

where deg(P ) denotes the total degree of a polynomial P .

Definition 10 (First integral). We say that a C1-function H : Ω → R, where

Ω ⊂ Rn is a first integral of system (7), or of the derivation D, if D(H) = 0,

and H is not locally constant on any positive Lebesgue measure subset of Ω.150

Definition 11 (Darboux polynomial). A Darboux polynomial of the system (7)

is a polynomial F ∈ C[x], such that

D(F ) := P1
∂F

∂x1
+ · · ·+ Pn

∂F

∂xn
= KF (9)

for some cofactor K ∈ C[x].

Remark 12. A polynomial first integral is also a Darboux polynomial with

cofactor K = 0. If the degree of the derivation (8) is d, then the degree of any

cofactor in (9) is bounded by d− 1.

Definition 13 (Exponential factor). An exponential factor of the system (7) is

a function E = exp(G/F ), with F,G ∈ C[x], such that

D(E) := P1
∂E

∂x1
+ · · ·+ Pn

∂E

∂xn
= LE,

for some cofactor L ∈ C[x], where the degree of L is lower than the degree of D.155

Remark 14. Notice that the polynomial F in the expression of E = exp(G/F )

is a Darboux polynomial. Moreover it can be easily deduced that D(G) =

KFG+ LF , where KF is the cofactor of F .

The Darboux theory of integrability relates the number of Darboux polyno-

mials and exponential factors with the existence of a Darboux first integral. A160

Darboux function is a product of complex powers of Darboux polynomials and
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exponential factors. Note that a rational function (a ratio of two polynomials)

is a special case of a Darboux function. A Darboux first integral is a Darboux

function that is a first integral according to Definition 10.

Theorem 15. Assume that a derivation D of degree d admits r Darboux poly-165

nomials Fi, i = 1, . . . , r, and s exponential factors Ej, j = 1, . . . , s. Let

N =
(
n+d−1
n

)
. Then the following statements hold.

(a) If r + s ≥ N + 1, then the derivation D admits a Darboux first integral.

(b) If r + s ≥ N + n, then the derivation D admits a rational fist integral.

Theorem 15(a) is due to Darboux [5, 4], whereas Theorem 15(b) is attributed170

to Jouanolou [14]. Theorem 15 casts the burden of finding first integrals into

finding Darboux polynomials.

As an illustration of the bound in Theorem 15(a) consider the case n = 2,

that is, a system in two variables. As noted earlier, for Darboux polynomials

Fi with cofactors Ki and exponential factors Ej with cofactors Lj , we have

max{degK1, . . . ,degKr,degL1, . . . ,degLs} ≤ d− 1.

Since the number of linearly independent polynomials in two variables of degree

at most d−1 is
(
d+1
2

)
, there must be a linear combination of cofactors summing

to zero, whenever r+s is strictly bigger than
(
d+1
2

)
. Hence Theorem 15 applies.175

Theorem 16. Assume the derivation D admits r Darboux polynomials Fi with

respective cofactors Ki, i = 1, . . . , r, and s exponential factors Ej with respective

cofactors Lj, j = 1, . . . , s. If there exist λ1, . . . , λr, µ1, . . . , µs in C, such that

r∑
i=1

λiKi +

s∑
j=1

µjLj = 0, (10)

then the Darboux function

Φ(x) = Fλ1
1 · · ·Fλr

r Eµ1

1 · · ·Eµs
s
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is a first integral of (7), provided Φ is not locally constant on any positive

Lebesgue measure subset of its domain of definition.

Proof. We first note that if Φ(x) is a first integral, then the composition F (Φ(x))

is another first integral, where F is any C1-function. Now we prove that log Φ

is a first integral. We have

D(log Φ) =

r∑
i=1

λiD(logFi) +

s∑
j=1

µjD(logEj)

=

r∑
i=1

λi
D(Fi)

Fi
+

s∑
j=1

µj
D(Ej)

Ej
=

r∑
i=1

λiKi +
s∑
j=1

µjLj .

The theorem follows from (10).

4. A particular class of reaction networks

We start by making a connection between the existence of certain Darboux180

polynomials and the structural form of a class of reaction networks. This form

is shared by many reaction networks, in particular the standard representation

of the Lotka-Volterra system.

Proposition 17. Consider an n-dimensional polynomial differential system (7)

with mass-action kinetics. Then for 1 ≤ i ≤ n the following three statements185

are equivalent:

(i) The function F = xi is a Darboux polynomial with cofactor K ∈ C[x].

(ii) Pi = Kxi with K ∈ C[x].

(iii) If α′ji > 0, then αji > 0 for all j = 1, . . . ,m.

Proof. The equivalence between (i) and (ii) follows from the definition of a190

Darboux polynomial.

Assume (iii). Consequently xi is a factor of (α′ji−αji)xyj , if the term is not

zero. If α′ji = 0 and αji > 0, then xi is also a factor of (α′ji−αji)xyj = −αjixyj

by definition of mass-action kinetics. Hence Pi =
∑m
j=1(α′ji −αji)xyj factorises
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as Pi = Kxi for some polynomial K ∈ C[x]. If Pi is zero, then K = 0 and (ii)195

is proved.

For the reverse statement, assume (ii), that is, Pi = Kxi (which might be

zero), for some K ∈ C[x], and α′ji > 0 for some j = 1, . . . ,m. We need to

show that αji > 0. Assume the opposite that αji = 0. Then α′jikjx
yj is a term

in Pi, not involving xi, by definition of mass-action kinetics. Hence it must200

cancel with terms from other reactions with the same monomial xyj , that is,

0 =
∑
{j′: yj′=yj}

(α′j′i − αj′i)kj′x
yj . Since xi is not a factor of xyj , we have

αj′i = 0, and hence 0 =
∑
{j′: yj′=yj}

α′j′ikj′x
yj ≥ α′jikjx

yj , implying α′ji = 0,

and we have reached a contradiction.

Condition (iii) is independent of the parameters of the reaction network, and205

hence it is fulfilled for all κ or for none at all. Thus, we have given a structural

characterisation of networks with Darboux polynomials F = xi for all i.

System (6) fulfills all three statements of Proposition 17 with K = k1 − k2.

Also system (5) fulfills all three statements of Proposition 17 for i = 1, that is,

F = x1 is a Darboux polynomial.210

Example 3 (Volpert’s network, part 3). Consider Volpert’s reaction network

in Example 1 and 2 with mass-action kinetics. According to Theorem 15 we

need to find (
3 + 2− 1

3

)
+ 1 = 5

Darboux polynomials to guarantee the existence of a conservation law. How-

ever, fewer might suffice if some linear combination of cofactors equals zero, see

Theorem 15. Using (1) and (4), it follows from Proposition 17, that the system

admits the Darboux polynomials Fi(x) = xi for i = 1, 2, 3 with cofactors

K1 = k3x3 − k1x2, K2 = k1x1 − k2x3, K3 = k2x2 − k3x1.

Now we aim to check if the above cofactors are linearly dependent. Since k2K1+

k3K2 + k1K3 = 0, this is so, and the network admits, according to Theorem 15,

12



the Darboux first integral

H1 = xk21 x
k3
2 x

k1
3 ,

for any values of the reaction rate constants k1, k2, k3 > 0. In addition, according

to Proposition 7 and 9, there is one independent linear conservation law H0 =

x1 + x2 + x3.

Theorem 18. Let (S, C,R) be a reaction network with mass-action kinetics

and reaction rate constants κ and let I ⊆ {1, . . . , n}. If215

(i) H =
∏
i∈I x

λi
i e

δixi , λi, δi ∈ R, λi 6= 0, i ∈ I,

is a first integral of the reaction network, then

(ii) if α′ji > 0 then αji > 0 for all j = 1, . . . ,m and i ∈ I.

Proof. If (i) is fulfilled, then xi is a Darboux polynomial of Pi [6]. Then (ii)

follows from Proposition 17.220

The proof shows that under the assumptions of the theorem, there is a linear

combination of cofactors for the Darboux polynomials Fi = xi and the expo-

nential factors Gi = eδixi , yielding the first integral H. The reverse statement is

not true in general: system (6) fulfills condition (ii) in Theorem 18, but cannot

have a conservation law of the form (i) as it is one-dimensional (unless k1 = k2,225

in which case x(t) = x(0) for all t > 0).

Example 4 (Lotka-Volterra network). Consider the following version of the

Lotka-Volterra system in R2
≥0,

A1
k1−−→ 2A1, A1 +A2

k2−−→ 2A2, A2
k3−−→ 0

(prey reproduce, predators eat prey and reproduce, predators die). Proposition

17(iii) is fulfilled, hence F1 = x1 and F2 = x2 are Darboux polynomials. The

corresponding cofactors are

K1 = k1 − k2x2, K2 = k2x1 − k3.

13



In addition, E = exp(x1 + x2) is an exponential factor with cofactor L =

k1x1 − k3x2. Note that k2L+ k3K1 + k1K2 = 0, hence

H = xk31 x
k1
2 e

k2(x1+x2), (x1, x2) ∈ R2
>0

is a first integral of the reaction network, which is well known [24].

Example 5 (Reversible network). Consider the following reaction network with

mass-action kinetics

2A1 +A2
k1−−→ A1 + 2A2, A1 + 2A2

k2−−→ 2A1 +A2.

The reaction network is said to be reversible because the second reaction is the

first reversed. Proposition 17(iii) is fulfilled, and F1 = x1 and F2 = x2 are

Darboux polynomials with cofactors

K1 = k1x
2
2 − k2x1x2, K2 = −k1x1x2 + k2x

2
1,

but they are not linearly dependent and there is no first integral as in Theorem

18. In fact, since H = x1 + x2 is a linear conservation law, we might reduce the

system to a one dimensional ODE, which cannot have a law of the form as in230

Theorem 18 (unless trajectories are constant).

It follows from the so-called deficiency zero theorem that the network in

Example 5 has precisely one steady state in each stoichiometric compatibility

class (given by H = x1 +x2) and that this steady state is asymptotically stable.

It also follows that there cannot be periodic orbits [8], which is also consequence235

of the fact that the system essentially is one dimensional.

5. First integrals and dynamics

In this section, we show by examples how to apply the Darboux method to

determine non-linear conservation laws of mass-action reaction networks. Ad-

ditionally, we demonstrate how first integrals might be used to study dynamical240
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properties of the system. For that purpose we use different generalisations of

Volpert’s reaction network (Example 1) that fall into the class of reaction net-

works characterised in Proposition 17.

We start with a definition of persistence and a lemma.

Definition 19 (Persistance). An ODE system for a reaction network is said to

be persistent if any trajectory starting from a positive initial point is bounded

away from the boundary of Rn≥0, that is,

0 < lim inf
t→∞

xi(t) for i = 1, . . . , n.

Lemma 20. Let (S, C,R) be a reaction network with mass-action kinetics and

reaction rate constants κ. Assume the system admits the following first integrals

H0 =

n∏
i=1

xλi
i e

δixi , Hk =
∑
i∈Ik

ωixi, k = 1, . . . , r,

where r ∈ N, ωi, λi > 0 are positive constants, δi ∈ C, ∪rk=1Ik = {1, . . . , n},245

Ik ∩ Ik′ = ∅ for k 6= k′, and there are no other linearly independent linear first

integrals. Then the system is persistent.

In addition, if δi = 0 for all i, then there exists at least one stable pos-

itive steady state x∗ = (x∗1, . . . , x
∗
n) in each stoichiometric compatibility class

(determined by Hk, k = 1, . . . , r), given by

x∗i =
λiHk

ωi
∑
j∈Ik λj

, i ∈ Ik, k = 1, . . . , r.

No trajectories apart from the constant trajectory x(t) = x∗, t ≥ 0, are attracted

towards x∗, that is, there exists ε > 0, depending on the initial condition x(0),

such that |x(t)− x∗| > ε for all t ≥ 0.250

Proof. By assumption Hk ≥ 0 for all k = 1, . . . , r. It follows that each concen-

tration xi, i ∈ Ik, is bounded by 0 ≤ xi ≤M := max{Mk | k = 1, . . . , r}, where

Mk = Hk/min{ωi | i ∈ Ik}, and from H0 that xi cannot get arbitrary close to

zero as this would imply that at least one other concentration, say xj , would
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become arbitrarily large, contradicting that xj ≤M for all j. Hence the system255

is persistent.

Choose an element ik ∈ Ik for each k and define Jk = Ir \ {ik}. By inserting

ωikxik = Hk −
∑
i∈Jk ωixi into H0 with δi = 0 we obtain

H0

n∏
i=1

ωλi
i =

n∏
i=1

(ωixi)
λi =

r∏
k=1

∏
i∈Ik

(ωixi)
λi

=

r∏
k=1

[(
Hk −

∑
i∈Jk

ωixi

)λik
∏
i∈Jk

(ωxi)
λi

]
, (11)

which attains its global maximum at x∗ = (x∗1, . . . , x
∗
n), where

x∗i =
λiHk

ωi
∑
j∈Ik λj

, i ∈ Ik, k = 1, . . . , r.

Any trajectory starting out at x∗ must remain there, hence x∗ is a positive

steady state in the given stoichiometric class. Since H0 is continuous as a

function of x, it follows that any trajectory that starts close to x∗ remains close

to x∗ for all t > 0. Hence the steady state x∗ is stable.260

For the last part, consider the right hand side of (11) as a continuous

function of (xi)i∈J , J = ∪rk=1Jk (with fixed values of H1, . . . ,Hk). Assume

some trajectory x(t) converges towards x∗ as t → ∞. Hence by continuity,

H0(x(t)) → H0(x∗) as t → ∞. Since H0 is constant along trajectories, it fol-

lows that H0(x(t)) 6= H0(x∗), unless x(t) = x∗.265

Remark 21. In [2] (see also [19]), a structural condition for persistence is

introduced. A siphon Σ ⊆ S is a subset of the species set with the property

that if Ai ∈ Σ and α′ij > 0 for some reaction Rj , then there is a species Ak ∈ Σ

such that αkj > 0 for the same reaction. If all siphons of the network contain

the species of a linear first integral, then the network is persistent. If a network270

fulfills the structural condition given in Theorem 18, then it does not satisfy this

condition. Any species Ai for which α′ij > 0 constitutes a siphon, but Σ = {Ai}

will only contain the support of a linear first integral if the concentration xi of
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Ai is constant through time.

5.1. Generalized Volpert network, example A275

Consider the following chemical reaction network

A1+A2i
k3i−2−−−→ 2A2i, A2i+A2i+1

k3i−1−−−→ 2A2i+1, A1+A2i+1
k3i−−→ 2A1, (12)

where i = 1, . . . , `. This is a generalization of the system in Example 1 for

which ` = 1. This general system has n = 2` + 1 species S = {A1, . . . , A2`+1},

and p = 5` + 1 complexes, C = {A1 + A2, . . . , A1 + A2`+1, A2 + A3, . . . , A2` +

A2`+1, 2A1, . . . , 2A2`+1}. There are m = 3` reactions.

Proposition 22. For any values of the reaction rate constants k1, . . . , k3` > 0

the polynomial differential system corresponding to the reaction network in (12)

admits the following two first integrals of Darboux type

H0 = x1
∏̀
i=1

x
k3i/k3i−1

2i

∏̀
i=1

x
k3i−2/k3i−1

2i+1 , H1 =

2`+1∑
i=1

xi,

the latter being the only linear first integral of the system. The first integral is280

the only possible first integral of the form H0 =
∏n
i=1 x

λi
i .

Proof. The differential equations associated with (12) are given by

dx1
dt

= x1
∑̀
i=1

(
− k3i−2x2i + k3ix2i+1

)
,

dx2i
dt

= x2i

(
k3i−2x1 − k3i−1x2i+1

)
,

dx2i+1

dt
= x2i+1

(
k3i−1x2i − k3ix1

)
,

for i = 1, . . . , `. In total we have 2`+1 equations and 3` reaction rate constants.
Since there are 2` + 1 linkage classes, 2` + 1 terminal linkage classes, and s =

n − rank(Γ) = 1, then H0 is the only linear conservation law according to

Proposition 9, for all values of the reaction rate constants.285
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It follows from Proposition 17 that the system admits at least 2`+1 Darboux

polynomials, namely Fi = xi, where i = 1, . . . , 2`+ 1, with the following 2`+ 1

cofactors

K1 =
∑̀
i=1

−k3i−2x2i+k3ix2i+1, K2i = k3i−2x1−k3i−1x2i+1, K2i+1 = k3i−1x2i−k3ix1.

In order to find a Darboux first integral one needs to find λ1, . . . , λ2`+1 such

that

0 = λ1K1 + . . .+ λ2`+1K2`+1

= x1
∑̀
i=1

(λ2ik3i−2−λ2i+1k3i)+
∑̀
i=1

(λ2i+1k3i−1−λ1k3i−2)x2i+
∑̀
i=1

(λ1k3i−λ2ik3i−1)x2i+1.

This expression is zero only if each coefficient of xi is zero. It follows that

any solution is proportional to

λ1 = 1, λ2i =
k3i
k3i−1

, λ2i+1 =
k3i−2
k3i−1

.

Hence, according to Theorem 16, H1 =
∏n
i=1 x

λi
i is a Darboux first integral.

Oppositely, if H0 =
∏n
i=1 x

λi
i is a first integral for some λi ∈ C, then so

is log(H0). It follows that D(H0) is a linear combination of the cofactors Ki,

hence λi must take the form stated above.

The assumption of Lemma 20 is fulfilled for the reaction network above;290

hence the conclusions apply. In particular the system is persistent. Volpert [24]

showed that for ` = 1 (n = 3) any trajectory starting in a positive initial point

is periodic.

5.2. Generalized Volpert network, example B

Consider the following chemical reaction network

Ai +Ai+1
ki−−→ 2Ai+1, An +A1

kn−−→ 2A1, (13)

18



where i = 1, . . . , n. This is a generalization of the system in Example 1, for295

which n = 3. The general system has n species, and p = 2n complexes, C =

{A1 +A2, . . . , An−1 +An, An+A1, , 2A1, . . . , 2An}. There are m = n reactions.

Proposition 23. For any values of the reaction rate constants κ, the polynomial

differential system corresponding to the network (13) admits only one linear

conservation law, namely

H1 =

n∑
i=1

xi.

Moreover, if n ≥ 3 is odd, then for any values of the reaction rate constants κ,

there is an additional non-linear conservation law

H0,odd =

n∏
i=1

x
∏(n−1)/2

j=1 k[(2j+i)modn]+1

i .

If n ≥ 4 is even and the following constraint on the rate constants is fulfilled,

1 =
knkn−2 . . . k2
kn−1kn−3 . . . k1

, (14)

then there are two non-linear conservation laws of the form H0,even =
∏n
i=1 x

λi
i

with

λ1 = 1, λ2i+1 =
k2i−1 . . . k1
k2i . . . k2

, λ2i = 0, (15)

and

λ2 = 1, λ2i+2 =
k2i . . . k2
k2i+1 . . . k3

, λ2i−1 = 0, (16)

for i = 1, . . . , n2 .

For general n ≥ 3, any first integral of the form H0 =
∏n
i=1 x

λi
i is a product

H0 = (H1
0,even)γH2

0,even, where γ ∈ C, H1
0,even has λi chosen as in (15), and300

H2
0,even has λi chosen as in (16).
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Proof. The polynomial differential system associated to the network (13) is

dx1
dt

= x1
(
knxn − k1x2

)
dxi
dt

= xi
(
ki−1xi−1 − kixi+1

)
dxn
dt

= xn
(
kn−1xn−1 − knx1

)
,

for i = 2, . . . , n − 1. It is straightforward to check that H1 is a conserva-

tion law. Since there are n linkage classes, n terminal linkage classes, and

s = n − rank(Γ) = 1, then H1 is the only linear conservation law according to

Proposition 9, for all values of the reaction rate constants. According to Propo-

sition 17, the system admits the Darboux polynomials Fi = xi, i = 1, . . . , n,

with cofactors given by

K1 = knxn − k1x2, Ki = ki−1xi−1 − kixi+1, Kn = kn−1xn−1 − knx1,

i = 2, . . . , n − 1. In order to find a Darboux first integral one needs to find

λ1, . . . , λn such that

0 = λ1K1 + . . .+ λnKn (17)

= (λ2k1 − λnkn)x1 +

n−1∑
i=2

(λi+1ki − λi−1ki−1)xi + (λ1kn − λn−1kn−1)xn.

This expression is zero only if each coefficient of xi is zero. If n ≥ 3 is odd, then

(17) is fulfilled by choosing

λ1 =

(n−1)/2∏
j=1

k2j , λi =

(n−1)/2∏
j=1

k[(2j+i)modn]+1,

for i = 2, . . . , n.

If n ≥ 4 is even, then the equations λi+1ki − λi−1ki−1 = 0 in (17) lead
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recursively to the equations

λ2i+1 =
k2i−1
k2i

λ2i−1 = . . . =
k2i−1 . . . k1
k2i . . . k2

λ1, (18)

and similarly for λ2i. By choosing λ1 = 1 and λ2 = 0 gives (15), and by choosing

λ1 = 0 and λ2 = 1 gives (16). for λ2i−1, λ2i in terms of λ1, λ2, respectively. The

equation λ1kn − λn−1kn−1 = 0 gives, using (18),

λn−1 =
kn
kn−1

λ1 =
kn−3 . . . k1
kn−2 . . . k2

λ1,

which implies the constraint (14), if λ1 6= 0. Similarly, the equation λ2k1 −

λnkn = 0 also implies the constraint (14), if λ2 6= 0.

Oppositely, if H0 =
∏n
i=1 x

λi
i is a first integral for some λi ∈ C, then so305

is log(H0). It follows that D(H0) is a linear combination of the cofactors Ki,

hence λi must take the form stated above.

Lemma 20 is applicable for n odd. In order to apply Lemma 20 for n even, we

need to choose two first integrals for which different λi’s are zero and combine

them into one first integral. Hence, the assumption of Lemma 20 is fulfilled and310

therefore also the conclusions hold.
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