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a b s t r a c t

The Moon–Rand systems, developed to model control of flexible space structures, are
systems of differential equations on R3 with polynomial or rational right hand sides that
have an isolated singularity at the origin at which the linear part has one negative and one
pair of purely imaginary eigenvalues for all choices of the parameters. We give a complete
stability analysis of the flow restricted to a neighborhood of the origin in any center
manifold of the Moon–Rand systems, solve the center problem on the center manifold,
and find sharp bounds on the number of limit cycles that can bemade to bifurcate from the
singularitywhen it is a focus.We generalize theMoon–Rand systems in a naturalway, solve
the center problem in several cases, and provide sufficient conditions for the existence of
a center, which we conjecture to be necessary.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In [1] (see also Exercise 5 of Section 5.5 of [2]) Moon and Rand introduced the following system of differential equations,
which we shall call theMoon–Rand system, in the context of modeling control of flexible structures:

u̇ = v

v̇ = −u − uw
ẇ = −λw + f (u, v)

(1.1)

where

f (u, v) = c20u2
+ c11uv + c02v2 or f (u, v) =

c11uv
1 + ηu2

.

Here λ, η, c20, c11 and c02 are real numbers, λ > 0, η > 0. They showed that in the former (polynomial feedback) case the
origin is asymptotically stable for the flow restricted to the center manifold if

2c20 − 2c02 − λc11 < 0.

This condition was found by approximating the local center manifoldW c of (1.1), transforming the system restricted toW c

to a normal form by means of an unspecified near-identity transformation, and going over to polar coordinates.
In this paper we give a complete stability analysis of the flow restricted to a neighborhood of the origin in any center

manifold. We allow arbitrary values of η and negative values of λ, requiring only that λ be nonzero so that the singularity
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