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In this work, we consider the Suslov problem, which consists of a rotation motion
of a rigid body, whose center of mass is located at one axis of inertia, around a
fixed point O in a constant gravity field restricted to a nonholonomic constraint. The
integrability and non-integrability has been established by a number of authors for
the nongeneric values of b = (b1, b2, b3) which is the unit vector along the line
connecting the point O with the center of mass of the body. Here, we prove the
analytic non-integrability for the remaining (generic) values of b. C© 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4763464]

I. INTRODUCTION

The Suslov problem is one of the most famous problems in nonholonomic dynamics with no
shape space and was formulated in Ref. 6. It is a generalized rigid body with some of its body
angular velocity components set equal to zero, i.e., it consists of a rotational motion of a rigid body
around a fixed point O in a constant gravity field when restricted by a nonholonomic constraint

〈n, ω〉 = 0,

where ω = (ω1, ω2, ω3) is the body angular velocity, n is a vector fixed in the body and 〈 · , · 〉 denotes
the standard metric in R3. To be more precise, the equations of motion of the Suslov problem are

I ω̇ = I ω × ω + εγ × b + λn, γ̇ = γ × ω, 〈n, ω〉 = 0, (1)

where λ is the Langrange multiplier; the diagonal matrix I = diag(I1, I2, I3) represents the inertia of
the body; γ = (γ1, γ2, γ3) is the unit vertical vector, and b = (b1, b2, b3) is the unit vector along the
line connecting the point O with the center of mass of the body; ε is the product of the mass of the
body and the gravity constant. We assume that n = (0, 0, 1), i.e., we assume that the center of mass
is located at the third axis of inertia, and thus the equation of the constraint is ω3 = 0. The Suslov
equations can be written as

ω̇1 = ε

I1
(γ2b3 − γ3b2), ω̇2 = ε

I2
(γ3b1 − γ1b3),

γ̇1 = −ω2γ3, γ̇2 = ω1γ3, γ̇3 = ω2γ1 − ω1γ2,

(2)

where I1, I2 > 0. System (2) has two polynomial first integrals

F1 = 1

2
(I1ω

2
1 + I2ω

2
2) + ε(b1γ1 + b2γ2 + b3γ3) and F2 = γ 2

1 + γ 2
2 + γ 2

3 . (3)
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