Analytic non-integrability of the Suslov problem

Adam Mahdi ${ }^{1, a)}$ and Claudia Valls ${ }^{2, b)}$
${ }^{1}$ Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh NC 27695, USA and Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 KrakSow, Poland
${ }^{2}$ Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

(Received 22 August 2012; accepted 28 September 2012; published online 6 November 2012)

In this work, we consider the Suslov problem, which consists of a rotation motion of a rigid body, whose center of mass is located at one axis of inertia, around a fixed point O in a constant gravity field restricted to a nonholonomic constraint. The integrability and non-integrability has been established by a number of authors for the nongeneric values of $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ which is the unit vector along the line connecting the point O with the center of mass of the body. Here, we prove the analytic non-integrability for the remaining (generic) values of b. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763464]

I. INTRODUCTION

The Suslov problem is one of the most famous problems in nonholonomic dynamics with no shape space and was formulated in Ref. 6. It is a generalized rigid body with some of its body angular velocity components set equal to zero, i.e., it consists of a rotational motion of a rigid body around a fixed point O in a constant gravity field when restricted by a nonholonomic constraint

$$
\langle\mathbf{n}, \omega\rangle=0
$$

where $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ is the body angular velocity, \mathbf{n} is a vector fixed in the body and $\langle\cdot, \cdot\rangle$ denotes the standard metric in \mathbb{R}^{3}. To be more precise, the equations of motion of the Suslov problem are

$$
\begin{equation*}
\mathbf{I} \dot{\omega}=\mathbf{I} \omega \times \omega+\varepsilon \boldsymbol{\gamma} \times \mathbf{b}+\lambda \mathbf{n}, \quad \dot{\gamma}=\gamma \times \omega, \quad\langle\mathbf{n}, \omega\rangle=0 \tag{1}
\end{equation*}
$$

where λ is the Langrange multiplier; the diagonal matrix $\mathbf{I}=\operatorname{diag}\left(I_{1}, I_{2}, I_{3}\right)$ represents the inertia of the body; $\boldsymbol{\gamma}=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is the unit vertical vector, and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is the unit vector along the line connecting the point O with the center of mass of the body; ε is the product of the mass of the body and the gravity constant. We assume that $\mathbf{n}=(0,0,1)$, i.e., we assume that the center of mass is located at the third axis of inertia, and thus the equation of the constraint is $\omega_{3}=0$. The Suslov equations can be written as

$$
\begin{gather*}
\dot{\omega}_{1}=\frac{\varepsilon}{I_{1}}\left(\gamma_{2} b_{3}-\gamma_{3} b_{2}\right), \quad \dot{\omega}_{2}=\frac{\varepsilon}{I_{2}}\left(\gamma_{3} b_{1}-\gamma_{1} b_{3}\right), \tag{2}\\
\dot{\gamma}_{1}=-\omega_{2} \gamma_{3}, \quad \dot{\gamma}_{2}=\omega_{1} \gamma_{3}, \quad \dot{\gamma}_{3}=\omega_{2} \gamma_{1}-\omega_{1} \gamma_{2},
\end{gather*}
$$

where $I_{1}, I_{2}>0$. System (2) has two polynomial first integrals

$$
\begin{equation*}
\mathcal{F}_{1}=\frac{1}{2}\left(I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}\right)+\varepsilon\left(b_{1} \gamma_{1}+b_{2} \gamma_{2}+b_{3} \gamma_{3}\right) \quad \text { and } \quad \mathcal{F}_{2}=\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2} . \tag{3}
\end{equation*}
$$

[^0]
[^0]: ${ }^{\text {a) }}$ Also at Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland. Electronic mail: adam.mahdi@uncc.edu.
 ${ }^{\text {b) cvalls@ math.ist.utl.pt. }}$

