

Analytic Tools to Bound the Criticality at the Outer Boundary of the Period Annulus

F. Mañosas¹ · D. Rojas¹ · J. Villadelprat²

Received: 29 August 2016 / Published online: 2 November 2016 © Springer Science+Business Media New York 2016

Abstract In this paper we consider planar potential differential systems and we study the bifurcation of critical periodic orbits from the outer boundary of the period annulus of a center. In the literature the usual approach to tackle this problem is to obtain a uniform asymptotic expansion of the period function near the outer boundary. The novelty in the present paper is that we directly embed the derivative of the period function into a collection of functions that form a Chebyshev system near the outer boundary. We obtain in this way explicit sufficient conditions in order that at most $n \ge 0$ critical periodic orbits bifurcate from the outer boundary. These theoretical results are then applied to study the bifurcation diagram of the period function of the family $\ddot{x} = x^p - x^q$, $p, q \in \mathbb{R}$ with p > q.

Keywords Center \cdot Period function \cdot Critical periodic orbit \cdot Bifurcation \cdot Criticality \cdot Chebyshev system

Mathematics Subject Classification 34C07 · 34C23 · 34C25

1 Introduction and setting of the problem

This paper is concerned with the period function of centers of planar differential systems. A singular point p of an analytic differential system

$$\begin{cases} \dot{x} = f(x, y), \\ \dot{y} = g(x, y), \end{cases}$$

is a *center* if it has a punctured neighbourhood that consists entirely of periodic orbits surrounding *p*. The largest punctured neighbourhood with this property is called the *period*

[☑] J. Villadelprat jordi.villadelprat@urv.cat

¹ Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain

² Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain