## EJECTION-COLLISION ORBITS AND INVARIANT PUNCTURED TORI IN A RESTRICTED FOUR-BODY PROBLEM

DANTE L. MARANHÃO<sup>1</sup> and JAUME LLIBRE<sup>2</sup>

<sup>1</sup>Departamento de Matemática, Universidade Federal de Alagoas Campus A.C. Simões, Maceió, Alagoas, Brazil <sup>2</sup>Departament de Matemàtiques, Universitat Autònoma de Barcelona Bellaterra, 08193 Barcelona, Spain

(Received: 21 July 1997; accepted: 22 July 1998)

**Abstract.** We study the motion of an infinitesimal mass point under the gravitational action of three mass points of masses  $\mu$ ,  $1 - 2\mu$  and  $\mu$  moving under Newton's gravitational law in circular periodic orbits around their center of masses. The three point masses form at any time a collinear central configuration. The body of mass  $1 - 2\mu$  is located at the center of mass. The paper has two main goals. First, to prove the existence of four transversal ejection–collision orbits, and second to show the existence of an uncountable number of invariant punctured tori. Both results are for a given large value of the Jacobi constant and for an arbitrary value of the mass parameter  $0 < \mu \leq 1/2$ .

Key words: restricted problem, invariant tori, ejection-collision orbits

## 1. Introduction and Statement of the Main Results

We study the motion of a mass point of negligible mass under the Newtonian gravitational attraction of three mass points of positive mass (called the *primaries*) moving in circular periodic orbits around their center of mass fixed at the origin of the coordinate system. At any instant of time the primaries form a collinear equilibrium configuration of the three-body problem. Two of these primaries have equal masses and are located symmetrically with respect to the third primary which is in rest at the center of mass.

Let  $m_0$ ,  $m_1$  and  $m_2$  be the masses of the three primaries. We choose the unity of mass in such a way that  $m_1 = \mu$ ,  $m_0 = 1 - 2\mu$  and  $m_2 = \mu$ , where  $\mu \in (0, 1/2)$ . The mass  $m_0$  is at rest at the origin of the coordinate system, and the two primaries (of equal masses) are moving in circular orbits around the center of mass of the system. Units of length and time are chosen in such a way that the distances between the primaries  $m_0$  and  $m_1$ , and  $m_0$  and  $m_2$ , and mean motion of  $m_1$  and  $m_2$  are equal to 1.

For studying the position of the infinitesimal mass  $m_3$  in the plane of motion of the primaries, we use either the *sidereal system* of coordinates (X, Y) (i.e. an inertial system with origin at the mass point  $m_0$ ), or the *synodical system* of coordinates (x, y) (i.e. a rotational system of coordinates with respect to the sidereal one in which the primaries are in rest). In the synodical system the three point masses  $m_2$ ,  $m_0$  and  $m_1$  are fixed at (-1, 0), (0, 0) and (1, 0), respectively. In this paper the *restricted* 



Celestial Mechanics and Dynamical Astronomy **71:** 1–14, 1999. © 1999 Kluwer Academic Publishers. Printed in the Netherlands.