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Abstract. In this paper we study unfoldings of saddle-nodes and their Dulac time. By unfolding a
saddle-node, saddles and nodes appear. In the first result (Theorem A) we give a uniform asymptotic
expansion of the trajectories arriving at the node. Uniformity is with respect to all parameters including
the unfolding parameter bringing the node to a saddle-node and a parameter belonging to a space of
functions. In the second part, we apply this first result for proving a regularity result (Theorem B) on
the Dulac time (time of Dulac map) of an unfolding of a saddle-node. This result is a building block
in the study of bifurcations of critical periods in a neighbourhood of a polycycle. Finally, we apply
Theorems A and B to the study of critical periods of the Loud family of quadratic centers and we prove
that no bifurcation occurs for certain values of the parameters (Theorem C).

1 Introduction and main results

This paper is dedicated to the study of saddle-nodes and their unfoldings in the real plane. Our initial
motivation comes from the study of bifurcations of critical periods of quadratic centers, but we think that
our results are of more general interest. From the point of view of the study of the period function, the
most interesting stratum of quadratic centers is given by the Loud family{

u̇ = −v + uv,

v̇ = u+Du2 + Fv2,
(1)

which is Darboux integrable (see Appendix B for a precise definition). Compactifying R2 to the Poincaré
disc, the boundary of the period annulus of the center has two connected components, the center itself and
a polycycle. We call them the inner and outer boundary of the period annulus, respectively. In [6], we
described one part of the bifurcations of local critical periods from the outer boundary in this family, but
many claims remained conjectural, see Figure 1. In particular, the study of the segment {D ∈ (−1, 0), F = 1}
requires a theoretical result about the local time function of such a family in a neighbourhood of a saddle-
node appearing at infinity. There, the center is bounded in the Poincaré disc by a symmetric polycycle
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Figure 1: Bifurcation diagram of the period function of (1) at the outer boundary according
to Theorem A in [6]. More precisely, R2 \ {ΓB ∪ ΓU} corresponds to local regular values,
whereas ΓB are local bifurcation values. The results in that paper did not allow us to determine
the character of the parameters in the dotted curve ΓU .

and, crossing the line F = 1, an unfolding of a saddle-node with poles along the line at infinity occurs,
see Figure 2. In Theorem C, we prove that no bifurcation of critical periods occurs for the values of the
parameter in

{
D ∈ (−1, 0) \ {− 1

2}, F = 1
}
, corresponding to saddle-nodes. The fundamental tool to obtain

this result is an asymptotic expansion of the period function. To this end, taking advantage of the symmetry
of the differential system (1), it suffices to study half of the period and then the essential part of the period
is given by the Dulac time in a neighbourhood of an unfolding of a saddle-node. By Dulac time we mean
the time that a trajectory spends for going between two given transverse sections to the separatrices of a
hyperbolic sector (see Figure 4), i.e. the time associated to the Dulac map (see for instance [9] and references
therein). By using the Darboux first integral and introducing an auxiliary parameter ε = 2(F − 1), we will
see in the proof of Theorem C that by a local change of coordinates this saddle-node unfolding can be
brought to the form

1

yU(x, y)

(
x(x2 − ε)∂x − (2F − x2)y∂y

)
, (2)

where y = 0 corresponds to the line at infinity in (1). More generally, in Theorem B we obtain an asymptotic
expansion, uniform with respect to the parameters, of the Dulac time of a saddle-node unfolding of the
following type:

1

yU(x, y)

(
Pε(x)∂x − V (x)y∂y

)
, (3)

where Pε, U and V are analytic functions to be described later. In fact, we will see in Appendix B that any
saddle-node unfolding which is locally Darboux integrable is orbitally analytically equivalent to (3). In the
applications, the pole along the center manifold y = 0 will correspond to the line at infinity.

To prove Theorem B we need to develop some results that in principle have nothing to do with the
Dulac time. Since we think that they are interesting on its own we state them separately as Theorem A.
For a better understanding of the statement of Theorem A, we briefly outline without technicalities the
underlying ideas that lead to the proof of Theorem B. For simplicity in the exposition let us consider (3)
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F 6 1 F > 1

Figure 2: Phase portrait of the Loud family (1), with D ∈ (−1, 0) and F > 0 in the Poincaré
disc, where the vertical invariant straight line is x = 1.

with ε = 0 and suppose that the origin is a saddle-node with a hyperbolic sector in the first quadrant as
shown in the phase portrait on the left in Figure 3. We will see in Section 3 that its Dulac time T between
{y = 1} and {x = 1} can be written as a convergent series T =

∑
n>1 Tn, where each term Tn is in turn the

Dulac time (between the same transverse sections) of

1

ynUn(x)

(
P0(x)∂x − V (x)y∂y

)
(4)

for some analytic function Un. Note that Tn(s) =
∫ 1

s
Un(x)yn(x;s)

P0(x) dx, where y(x; s) = exp(−
∫ x
s

V (ξ)
P0(ξ) dξ) is

the trajectory of (4) passing through the point (s, 1). A computation, see Section 3, shows that y = Tn(x)
is a trajectory of the vector field

P0(x)∂x +
(
nV (x)y − Un(x)

)
∂y (5)

arriving backward in time to the saddle-node at
(

0, Un(0)
nV (0)

)
through the parabolic sector in x > 0, see the

phase portrait on the right in Figure 3. This is the key point and explains why beginning with the problem
of computing the Dulac time associated to a hyperbolic sector, we end up studying the trajectories arriving
through a parabolic sector. Of course when ε 6= 0 the saddle-node bifurcation occurs and we turn to study
the Dulac time of a hyperbolic sector in a saddle by considering the trajectories arriving through a parabolic
sector to a node. This is delicate because the uniformity with respect to parameters, in particular ε ≈ 0,
is essential for the applications. The framework in both problems is the same, an unfolding of saddle-node,
but we pay attention to different objects. Thus, although our initial motivation was the “temporal result”
stated in Theorem B concerning the Dulac time of an unfolding of a saddle-node, as a byproduct of its proof
we obtain the “orbital result” given in Theorem A concerning the trajectories arriving through a parabolic
sector in an unfolding of a saddle-node. Next, we present the unfolding of saddle-node that we consider in
Theorem A, see the family (6) below, but let us advance that our approach to prove Theorem B, writing
T =

∑
n>1 Tn, forces that the real parameter λ has to be unbounded and that U must be a functional

parameter inside a Banach space. They will play, respectively, the role of n and Un in (5) when we prove
Theorem B by applying Theorem A and, once again, the uniformity with respect to these parameters will
be crucial.

In order to present our main results properly, we fix µ ∈ N and we consider the following unfolding of a
saddle-node

X = Pε(x)∂x +
(
λVa(x)y − U(x)

)
∂y, (6)

parametrized by (ε, a, λ, U), with ε ≈ 0, a in an open subset A of Rα, λ > 0, U ∈ U and
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1

1

y = Tn(x)

Figure 3: On the left, transverse sections associated to the Dulac time Tn for system (4) and,
on the right, trajectory y = Tn(x) arriving backward in time to the saddle-node for system (5).

• Pε(x) = P (x; ε) is an analytic function in (x, ε), for |x| 6 r, such that P0(x) has a zero of order
µ+ 1 > 2 at x = 0;

• Va(x) is analytic in (x, a), for |x| 6 r, with Va(0) = 1, for all a ∈ A;

• U is the space of series U(x) =
∑
j>0 ujx

j ∈ R{x}, with convergence radius greater than r > 0.

By rescaling, we assume that r = 1 and Va(x) > 0, for |x| 6 1, for all a ∈ A. We endow U with the norm
‖U‖ :=

∑
j>0 |uj | and with this norm it becomes a Banach space. We denote U1 := {U ∈ U : ‖U‖ 6 1}.

By Weierstrass preparation theorem and rescaling, we can assume that Pε(x) is a polynomial of degree
µ + 1 in x, with P0(x) = xµ+1. The reason for not including the parameter λ into a is that it will vary
in an unbounded interval. As we explained before, this will play a key role in the proof of Theorem B.
Moreover, the limit case λ =∞ corresponds to a singular deformation or slow-fast system, which is also of
independent interest. It is also worth mentioning that, although the unfolding (6) is not necessarily locally
Darboux integrable, it is always local Liouville integrable (see Remark 4.4 in Appendix B).

Notice that the singularity (x, y) = (0, U(0)/λ) is a saddle-node of X|ε=0, whose (real) parabolic sector
is contained in the half plane x > 0. We will assume that Pε(x) has a real root for ε ≈ 0. In what follows, ϑε
will denote the biggest real root of Pε(x). As it will be clear in a moment, our results refer to this root,
and the reason for choosing this one among the others is because we can approach it from the right inside a
parabolic sector that does not shrink as ε tends to zero. In the study of bifurcations, having uniformity on
the parameters is crucial and, with respect to ε, this only makes sense by approaching from the right to ϑε.
Moreover, this is the only relevant situation in the study of the period function near the outer boundary of
the period annulus. In the sequel, we will assume

(H0) P ′ε(ϑε) > 0, for ε 6≈ 0, so that the singular point (x, y) =
(
ϑε,

U(ϑε)
λVa(ϑε)

)
is a node of X.

The polynomial Pε(x) need not be irreducible. We identify the two branches that contain the root x = ϑε,
for ε > 0 and ε 6 0, and we apply Puiseux theorem to each one, obtaining ρ± ∈ N and analytic functions
σ±(z) ∈ R{z}, such that

ϑε =

{
σ−
(
(−ε)1/ρ−

)
, if ε 6 0,

σ+

(
(+ε)1/ρ+

)
, if ε > 0.

(7)

Note that σ±(0) = 0, because ϑε tends to zero as ε → 0. This gives the continuity of the function ϑε.
Note that this function in general is not analytic at ε = 0, even though σ− and σ+ are. In our first result,
Theorem A, we treat the unfolding (6), as ε→ 0+, or ε→ 0−. Since the substitution ε 7−→ −ε interchanges
both situations, we will restrict to the case ε > 0 and, in what follows, when there is no risk of confusion,
we will omit the subscript +, for the sake of shortness.
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Besides the natural assumption (H0), we need to impose two technical conditions on Pε(x) = P (x; ε).
In order to state them precisely, we introduce the function

Q(s, ε) :=
P
(
s+ σ(ε); ερ

)
s

, (8)

which is analytic at (s, ε) = (0, 0) and polynomial in s. Moreover, Q(s, 0) = sµ and on account of (H0),
Q(0, ε) = χ εν + . . ., with χ > 0, for some ν ∈ N. Taking this notation into account, the aforementioned
assumptions are the following:

(H1) The Newton’s diagram of Q(s, ε) has only one compact side (connecting the endpoints (µ, 0) and
(0, ν)), i.e. Q admits a Taylor’s expansion of the form

Q(s, ε) =
∑

i
µ+ j

ν>1

qijs
iεj .

(H2) The principal (µ, ν)-quasi-homogeneous part of Q(s, ε) is positive definite on the first quadrant, i.e.∑
i
µ+ j

ν=1

qij sini θ cosj θ > 0, for all θ ∈
[
0,
π

2

]
.

Notice that (H2) implies (H0) because P ′ε(ϑε) = Q(0, ε). On the other hand, if gcd(µ, ν) = 1, then (H1)
implies (H2). However, the last implication does not hold in general, as the following example shows.

Example 1.1. If Pε(x) = x((x− ε)2 + ε4), then ϑε ≡ 0, Q(x, ε) = (s− ε)2 + ε4 = s2 − 2s ε+ ε2 + ε4 and
µ = ν = 2. One can easily show that Pε satisfies (H0) and (H1), but it does not satisfy (H2). �

Let y(x) = y(x;x0, y0, ε, a, λ, U) be the trajectory of (6), i.e. the solution of the linear differential
equation

Pε(x)y′(x) = λVa(x)y(x)− U(x), (9)

with initial condition y(x0) = y0. We have y(x) = D(x) y0
D(x0) + yL(x), where

D(x) = D(x; ε, a, λ) := exp

(
λ

∫ x

1

Va(s)

Pε(s)
ds

)
and

yL(x;x0, ε, a, λ, U) := D(x; ε, a, λ)

∫ x0

x

U(s)

Pε(s)

ds

D(s; ε, a, λ)
.

Here D(x) is a fundamental solution of the homogeneous equation and it coincides with the Dulac map
of the saddle point (x, y) = (ϑε, 0) of the vector field Pε(x)∂x − λVa(x)y∂y, for x > ϑε. Moreover, yL(x)
is the particular solution with initial condition y0 = 0 and it depends linearly on U ∈ U . We are now
in position to state our first main result, which describes how the trajectories of (6) arrive at the node
(x, y) =

(
ϑε,

U(ϑε)
λVa(ϑε

)
given by hypothesis (H0). For convenience, in its statement we use the differential

operator

Θλ =
1

λ
s∂s. (10)

Theorem A. Let us consider the saddle-node unfolding given in (6), with ε > 0. Assume that Pε(x) satisfies
the hypothesis (H1) and (H2). Then, there exist functions cj(ε, λ, a, U), j ∈ Z+, satisfying that, for each
`, k ∈ Z+, λ0 > 0 and every compact set Ka ⊂ A, there exists ε0 > 0, such that c0, . . . , c` are analytic on
A := [0, ε0] ×Ka × [λ0,∞) and are uniformly bounded linear operators on U and the following assertions
hold:
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(a) for every compact set Kx ⊂ (0, 1], the particular solution yL of (9) is of the form

yL(s+ ϑε;x0, ε, a, λ, U) =
∑̀
j=0

cj(ε
1/ρ, a, λ, U)sj + s`h`(s;x0, ε, a, λ, U),

where Θr
λh`(s)→ 0, as s→ 0+, uniformly on Kx×A×U1, for r = 0, 1, . . . , k;

(b) the fundamental homogeneous solution of (9) is of the form D(s + ϑε; ε, a, λ) = s`h`(s; ε, a, λ), where
Θr
λh`(s)→ 0, as s→ 0+, uniformly on A, for r = 0, 1, . . . , k.

Theorem A can be compared to the results [10] and [11] of Rousseau and Teyssier but important dif-
ferences exist. Both studies deal with unfoldings of saddle-nodes. Rousseau and Teyssier deal with the
complex foliation, whereas our study is essentially real. They construct what they call squid sectors on
which, by a holomorphic change of coordinates, the vector field can be brought to a model and give moduli
of analytic classification in terms of comparison of these normalizing coordinates and the period functions
on asymptotic cycles giving the temporal part of the moduli. Their model equation is like our equation (6),
but with U = 0. The real interval [ϑε, x0], which we study, would belong to one of their squid sectors, having
the node in its boundary. Our study gives the asymptotic expansion of the solutions at the boundary of
such a squid sector with a good uniform control together with all derivatives of the remainder term. It is
algorithmic. We think that it cannot be obtained from the results in [11]. Note that requiring the uniform
flatness property of a remainder term has proved its efficiency in studying the cyclicity (creation of cycles)
and their bifurcations from hyperbolic polycyles, see e.g. [8]. It is also the right condition for studying the
bifurcation of critical periods from monodromic polycycles.

A specific situation which will be useful for further applications is the following:

Pε(x) = x(xµ − ε) and U(x) = xmŪ(x), with m ∈ Z+. (11)

In this case we have

ϑε =

{
0, if ε 6 0,

ε1/µ, if ε > 0.
(12)

Our next main result follows almost directly by applying twice Theorem A. We point out that it deals with
both cases ε > 0 and ε 6 0.

Corollary A. Consider the saddle-node unfolding given in (6), taking the functions given in (11) and
setting ϑε, as in (12). Then there exist functions cj(ε, λ, a, U), j ∈ Z+, satisfying that, for each `, k ∈ Z+,
λ0 > 0 and every compact set Ka ⊂ A, there exists ε0 > 0 such that c0, . . . , c` are continuous on A :=
[−ε0, ε0]×Ka× [λ0,∞) and are uniformly bounded linear operators on U , with cj(ε, a, λ, U) = 0, for ε 6 0
and j = 0, 1, . . . ,m− 1; and such that the following assertions hold:

(a) for every compact set Kx ⊂ (0, 1], the particular solution yL of (9) is of the form

yL(s+ ϑε;x0, ε, a, λ, U) =
∑̀
j=0

cj(ε, a, λ, U)sj + s`h`(s;x0, ε, a, λ, U),

where Θr
λh`(s)→ 0, as s→ 0+, uniformly on Kx×A×U1, for r = 0, 1, . . . , k;

(b) the fundamental homogeneous solution of (9) is of the form D(s + ϑε; ε, a, λ) = s`h`(s; ε, a, λ), where
Θr
λh`(s)→ 0, as s→ 0+, uniformly on A, for r = 0, 1, . . . , k.
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It is worth to notice that the case µ = 1, ε = 0, λ = 1, Va ≡ 1, m = 1 and Ū ≡ 1 in the above corollary
corresponds to the classical Euler equation x2∂x+ (y+x)∂y, having an irregular singular point at the origin
whose center manifold has a divergent asymptotic expansion y(x) = −

∑
n≥1(n− 1)!xn at x = 0.

Before stating properly the second main result of the paper let us recall that the general setting is
the study of the period function of a family of polynomial centers in the plane. It is well-known that,
by blowing-ups, any singularity of a vector field reduces to simple singularities or saddle-nodes, see for
instance [13]. Hence, the period function around any monodromic polycycle can always be expressed as the
sum of Dulac times of saddle or saddle-node singularities, composed by their corresponding Dulac maps.
Therefore, local Dulac time of saddles or saddle-nodes in the finite plane or at infinity can be thought of as
the basic building blocks in the study of the period function near the outer boundary of a period annulus. In
[5] and [7], we deal with orbitally linearizable and resonant saddles, respectively. In this paper we consider
the remaining case: saddle-node singularities. Since the Dulac time and its derivative of a singularity in
the finite plane tends to infinity, the interesting situation occurs when there are vertices of the polycycle
bounding the period annulus that belong to the divisor at infinity obtained by desingularization. We study
here the Dulac time of an unfolding of a saddle-node at infinity. Generically, the hyperbolic sector of the
saddle-node belonging to the polycycle bounding the period annulus is deformed to a hyperbolic sector of a
saddle point. This saddle point either remains at infinity or comes to the finite plane in the unfolding. In
the second situation there is a superposition of two different geometric phenomena. For this reason we study
the first case. The simplest way to assure this situation is by requiring that the line at infinity is the center
manifold. This requirement, together with the considerations about the Darboux integrability explained
before (see Proposition 4.5), motivates us to consider in the temporal setting the saddle-node unfolding (3).
Next we rewrite it for the reader’s convenience, making explicit the dependence on an auxiliary parameter
a ∈ A ⊂ Rα:

1

yUa(x, y)
(Pε(x)∂x − Va(x)y∂y) . (13)

Without loss of generality, we assume that Ua(x, y) 6≡ 0 has an absolutely convergent Taylor series at
(x, y) = (0, 0) on |x|, |y| 6 1, and that Va(x) is an analytic function on |x| 6 1, with Va(0) > 0, for all a ∈ A.
Notice that under assumption (H0), the point (ϑε, 0), where ϑε is the biggest root of Pε(x), is now a saddle
of the differential system (13), for ε ≈ 0. In these local coordinates, the period annulus is in the quadrant
y > 0 and x > ϑε. In the statement of our next result, T (s; ε, a) is the Dulac time of the saddle-node
unfolding (13) between the transverse sections {y = 1} and {x = 1}, i.e. it is the time that the trajectory
starting at (s+ ϑε, 1) spends to arrive to {x = 1}. We also use Θ = Θ1, see (10), for shortness.

Theorem B. Let us consider the Dulac time T (s; ε, a) of the saddle-node unfolding (13), with ε > 0. Assume
that Pε(x) satisfies conditions (H1) and (H2). Then there exist functions cj(ε, a), j ∈ Z+, satisfying that,
for each `, k ∈ Z+ and every compact set Ka ⊂ A, there exists ε0 > 0 such that c0, . . . , c` are analytic on
[0, ε0]×Ka; and the Dulac time can be written as

T (s; ε, a) =
∑̀
j=0

cj(ε
1/ρ, a)sj + s`h`(s; ε, a),

with Θrh`(s)→ 0, as s→ 0+, uniformly on [0, ε0]×Ka, for r = 0, 1, . . . , k.

As we already did in Corollary A, we particularize the unfolding (13) considered in Theorem B by taking

Pε(x) = x(xµ − ε) and Ua(x, y) = xmŪa(x, y), (14)

where m ∈ Z+ and a ∈ A. As before, we stress that our next result deals with both cases, ε > 0 and ε 6 0.

Corollary B. Let us consider the Dulac time T (s; ε, a) of the saddle-node unfolding (13) taking the func-
tions in (14) and setting ϑε as in (12). Then there exist functions cj(ε, a), j ∈ Z+, satisfying that for
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Figure 4: Local Dulac time and normalized transverse sections.

each `, k ∈ Z+ and every compact set Ka ⊂ A, there exists ε0 > 0 such that c0, . . . , c` are continuous on
[−ε0, ε0]×Ka; and the Dulac time can be written as

T (s; ε, a) =
∑̀
j=0

cj(ε, a)sj + s`h`(s; ε, a)

with Θrh`(s) → 0, as s → 0+, uniformly on [−ε0, ε0] ×Ka, for r = 0, 1, . . . , k. Moreover, cj(ε, a) = 0, for
ε 6 0 and j = 0, 1, . . . ,m− 1.

Before introducing Theorem B we mentioned that the local Dulac time is the basic building block in the
study of the period function near the polycycle at the outer boundary of the period annulus. Let us now
clarify the role of Theorem B and Corollary B in this study and state our last main result. After blowing-up
the singularities, we can decompose the period function near the polycycle as a sum of Dulac times between
arbitrary transverse sections Σ1 and Σ2 as it is shown in Figure 4. In order to study each Dulac time, we use
a diffeomorphism that brings the unfolding of the singularity to its normal form; a saddle or a saddle-node.
In this paper, we study the saddle-node unfolding, given in (13). We use the normalizing diffeomorphism
Φ to introduce two auxiliary normalized transverse sections Σn1 := Φ({y = 1}) and Σn2 := Φ({x = 1}).
The function T in Theorem B and Corollary B is precisely this local Dulac time between Σn1 and Σn2 . In
order to have a general result on the Dulac time between arbitrary transverse sections, one must add to the
local Dulac time the two times necessary to go from given transverse sections to the normalized ones. For
applications it is convenient to express these times in the coordinate on the source transversal and this leads
to a composition problem. The symmetry of the differential system (1) makes this composition problem
easier than the general situation and we are able to solve it with the tools developed in the present paper.
More precisely, Corollaries A and B, together with a result obtained in [5], enable us to answer the initial
question motivating this paper. We can thus prove the following result, see also Figure 1, where for a precise
definition of local regular value we refer the reader to [6].

Theorem C. Denoting a = (D,F ), let {Xa, a ∈ R2} be the family of differential systems in (1) and consider
the period function of the center at the origin. Then the parameters a ∈

{
D ∈ (−1, 0) \ {− 1

2}, F = 1
}
are

local regular values of the period function at the outer boundary.

We point out that, by a result in [6], the exceptional parameter (D,F ) = (− 1
2 , 1) is a local bifurcation

value, as it can be seen in Figure 1.
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The paper is organised as follows. In Section 2 we obtain the results dealing with the “orbital setting”
explained before, including the proofs of Theorem A and Corollary A. Sections 3 and 4 are devoted, respec-
tively, to the proof of Theorems B and C. In Appendix A we prove a L’Hôpital’s rule with uniformity in the
parameters which is fundamental in the proof of Theorem A. Finally, in Appendix B we discuss the relations
between the notions of Darboux and Liouville local integrability in regard to the different unfoldings that we
consider in the paper. We thank the anonymous referee, whose comments helped improve the presentation
of the results.

2 Orbital results

This section is dedicated to the proof of Theorem A and Corollary A, but first some preliminary and
auxiliary results must be proved. To this end, we fix once for all λ0 > 0 and compact subsets Ka ⊂ A and
Kx ⊂ (0, 1]. Unless explicitly stated, we shall assume that ε > 0 and in the sequel we shall use

|ε = |ε(ε) := ε1/ρ,

where ρ = ρ+ ∈ N is the inverse of the Puiseux exponent given in (7). Recall that a trajectory y = y(x)
of the unfolding, given in (6), verifies the linear differential equation Pε(x)y′(x) = λVa(x)y(x) − U(x).
Accordingly,

Pε(s+ ϑε)y
′(s+ ϑε) = λVa(s+ ϑε)y(s+ ϑε)− U(s+ ϑε).

On account of ϑε = σ(|ε), from the definition in (8), we get Pε(s+ϑε)
s = Q(s, |ε). Thus, since Θλ = 1

λs∂s,
setting

T (s, |ε) := y(s+ σ(|ε)), V(s, |ε) := Va(s+ σ(|ε)) and U(s, |ε) :=
1

λ
U(s+ σ(|ε)),

the above linear differential equation writes as QΘλT = VT − U . The idea to obtain the asymptotic
expansion is to search for a formal solution T (s) = c0 + c1s+ c2s

2 + . . . satisfying

1

λ
Q(s, |ε)s(c1 + 2c2s+ . . .) = V(s)(c0 + c1s+ c2s

2 + . . .)− U(s).

Since Q(s, |ε)s
∣∣
s=0

= 0, evaluating in s = 0, we get c0 = U(0)
V(0) . Next step gives

c1 = lim
s→0

[
1

s

(
U(s)

V(s)
− U(0)

V(0)

)
V(s)

V(s)− 1
λQ(s)

]
.

We formalize this inductive procedure as follows.

Definition 2.1. Consider the linear finite difference operator, acting on functions f(s) analytic at s = 0,
given by (

∇f
)
(s) :=

{
f(s)−f(0)

s for s > 0,

f ′(0) for s = 0.

Setting F0 = U , we define inductively F`+1 = V`∇(F`/V`), where V`(s) := V(s)− `
λQ(s; |ε). Finally, define

c` :=
F`
V`

∣∣∣∣
s=0

and Σ`(s) :=
∑̀
j=0

cjs
j .

Note that, for each `, c` = c`(|ε, λ, a, U) is a well defined function on [−ε`, ε`]× [λ0,∞)×Ka ×U , for some
ε` > 0, which may go to zero, as `→ +∞. In the previous definitions, ` belongs to Z+, for convenience we
define Σ−1 := 0. �
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Notice that the functions F`, ` ∈ N, are obtained from F0 = U , by iterating a sort of finite differences
operators, but conjugated by multiplication by V`.

Remark 2.2. Let g(s) be an analytic function at s = 0. Then, for each m ∈ N and k ∈ {0, 1, . . . ,m}, we
have that ∇k

(
smg(s)

)
= sm−kg(s). �

Lemma 2.3. QΘλΣ` = VΣ` − U + s`+1F`+1, for each ` ∈ N ∪ {−1, 0}.

Proof. We proceed by induction on `. For ` = −1, Σ` ≡ 0 and the assertion holds. Assume now that the
claim is true for `− 1. Then

QΘλΣ` = QΘλΣ`−1 +QΘλ(c`s
`) = VΣ`−1 − U + s`F` + `Qc`s` = VΣ` − U + s`

(
F` − c`V`

)
= VΣ` − U + s`+1F`+1,

because F` − c`V` = sF`+1, by definition.

Definition 2.4. For each k ∈ Z+ and d ∈ {0, 1}, we say that a real function F (s, |ε; a, λ, U) belongs to the
set Fdk , if it can be written as

F (s, |ε; a, λ, U) =
f(s, |ε; a, λ, U)

Q(s; |ε)k
,

where Q verifies hypothesis (H1) and (H2) and f is a function such that

(a) f(s, |ε; a, λ, U) is analytic at (s, |ε) = (0, 0), for fixed a, λ, U and it is homogeneous of degree d in U , more
precisely, for d = 0, it does not depend on U and, for d = 1, it depends linearly on U ,

(b) f(s, |ε; a, λ, U) =
∑
i,j>0 fij(a, λ, U)si|εj with fij(a, λ, U) ≡ 0, for i

µ + j
ν < k, and

(c) there exists a neighbourhood W of (s, |ε) = (0, 0) in C2 such that the complex-analytic extension of f
in (s, |ε) satisfies

sup {|f(s, |ε; a, λ, U)| : (s, |ε) ∈W, (a, λ, U) ∈ [λ0,+∞)×Ka×U1} < +∞.

When we write f
Qk ∈ F

d
k , we will assume implicitly that f satisfies conditions (a), (b) and (c). �

Lemma 2.5. The following properties hold:

(a) Fdk is stable by addition, F0
kFdm ⊂ Fdk+m and Fdk ⊂ Fdk+1;

(b) ∇Fd0 ⊂ Fd0 ;

(c) ΘλFdk ⊂ Fdk+1;

(d) sµ

Q ∈ F
0
1 , V`, 1

V` ∈ F
0
0 and U : (s, |ε; a, λ, U) 7−→ 1

λU(s+ ϑε) ∈ F1
0 ;

(e) If F ∈ Fdk , then there exists a neighbourhood W of (s, |ε) = (0, 0) in R+×R+ such that F is bounded on
W ×Ka ×[λ0,∞)×U1.

Proof. Assertion (a) is straightforward. To prove assertion (b), note first that since ∇ is a linear operator
it preserves the homogeneous degree d on U . On the other hand, the condition on the Newton’s diagram
for belonging to Fd0 (i.e. for k = 0) is empty. Let f be an element of Fd0 . There exists r0 > 0, such that the
function f(s, |ε; a, λ, U) is defined, for every s ∈ C, with |s| 6 r0. By applying Cauchy’s integral formula to
the function s 7−→ f(s, |ε; a, λ, U), which is analytic at s = 0, we get

∇f(s, |ε; a, λ, U) =
1

2πi

∫
|ζ|=r0

f(ζ, |ε; a, λ, U)

(ζ − s)ζ
dζ.
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If |s| ≤ r0/2, then the denominator in the integrand is bounded away from zero and the boundedness of the
complex analytic extension of f implies the boundedness of that of ∇f .
(c) Suppose that f

Qk ∈ F
d
k . We will prove first that Θλf

Qk ∈ F
d
k . To see this, note first that the derivative

Θλ is a linear operator and it does not affect the condition about the Newton’s diagram of f . On the other
hand, by Cauchy’s differentiation formula, we have that

Θλf(s, |ε; a, λ, U) =
1

2iπ

∫
|ξ|=r0

s f(ζ, |ε; a, λ, U)

λ(ζ − s)2
dζ

is bounded on W ×Ka × [λ0,∞)×U1, where W is a neighbourhood of (s, |ε) = (0, 0) in C2. In particular,
taking f = Q and k = 1, we deduce that ΘλQ

Q ∈ F0
1 . Finally, on account of Θλ( f

Qk ) = Θλf
Qk − k

f
Qk

ΘλQ
Q , we

conclude that ΘλFdk ⊂ Fdk+1, by using the assertions in (a).
(d) Obviously sµ

Q ∈ F
0
1 . Due to Va(0) = 1 and Q(0, 0) = 0, it follows that, for every ` ∈ N and λ0 > 0, there

exists a neighbourhood W of (s, |ε) = (0, 0) in C2 such that

1

2
6 Va(s+ ϑε)−

`

λ
Q(s; |ε) 6 2

on W ×Ka × [λ0,∞). This shows that V` and 1
V` belong to F0

0 . Finally, U ∈ F1
0 because U(s+ϑε)

λ is clearly
linear in U and bounded onW×[λ0,∞)×U1, whereW is a sufficiently small neighbourhood of (s, |ε) = (0, 0)
in C2 (in this case there is no dependence on a).
(e) If F = f

Qk belongs to Fdk , then f(rν sin θ, rµ cos θ; ξ) = rkµν f̃(r; ξ̃) ∈ F0
0 , where ξ̃ := (ã, λ, U) with

ã := (a, θ) varying in the compact set Ka× [0, π2 ]. By Remark 2.2, we have that f̃(r; ξ̃) = ∇kµν(rkµν f̃(r; ξ̃)),
which belongs to F0

0 thanks to the assertion (2), i.e. f̃(r; ξ̃) is bounded on V ×Ka× [0, π2 ]× [λ0,∞)×U1,
where V is some neighbourhood of r = 0 in C. On the other hand, hypothesis (H1) and (H2) imply that
Q(rν sin θ, rµ cos θ) = rµν q̃(r, θ) with q̃(0, θ) > δ > 0, for all θ ∈ [0, π2 ]. Hence, there exists r0 > 0 such that

q̃(r, θ) > δ/2, for all r ∈ [0, r0] and θ ∈ [0, π2 ]. Accordingly, this shows that F (rν sin θ, rµ cos θ; ξ) = f̃(r,ξ̃)
q̃(r,θ)k

is
bounded, when r ∈ [0, r0], θ ∈ [0, π2 ] and (a, λ, U) ∈ Ka × [λ0,∞)×U1, as desired.

The reason to require the boundedness of f on W ×Ka × [λ0,∞)×U1, where W is a neighbourhood of
the origin in C2, and not just in R2, is illustrated by the following example.

Example 2.6. The analytic function f(s;λ) = sin(λ2s) is bounded on R× [λ0,∞). However Θλf(s;λ) =
λs cos(λ2s) is not bounded on (−s0, s0) × [λ0,∞), for any s0 > 0. Notice that, although there exists a
neighbourhood of R× [λ0,∞) in C× [λ0,∞) where the analytic extension of f is bounded, this function is
unbounded on U× [λ0,∞), for any neighbourhood U of s = 0 in C. Thus, f does not belong to F0

0 according
to Definition 2.4. �

Proposition 2.7. For each ` ∈ Z+, F` ∈ F1
0 and there exists ε` > 0 such that c`(|ε, a, λ, U) is an analytic

function in (|ε, a, λ) ∈ [0, ε`]×Ka × [λ0,∞) and a uniformly bounded linear operator on U .

Proof. To prove that F` ∈ F1
0 , we proceed by induction on `. The case ` = 0 follows from assertion (d)

of Lemma 2.5, because F0 = U . The inductive step follows easily from the recursive definition F`+1 =
V`∇(F`V−1

` ), by using assertions (a), (b) and (d) of Lemma 2.5. Using again Lemma 2.5, we deduce that
F`
V` ∈ F

1
0 , which implies that c` = F`

V`

∣∣
s=0
∈ F1

0 . By condition (c) in Definition 2.4, we have

sup {|c`(s, |ε; a, λ, U)| : (s, |ε) ∈W, (a, λ, U) ∈ [λ0,+∞)×Ka×U1} < +∞,

for some neighborhood W of (s, ε) = (0, 0). The analyticity of c` in the remaining parameters (|ε, a, λ)
follows easily from Definition 2.1 by the analyticity of 1

λU(s+ σ(|ε)) and Va(s+ σ(|ε)).
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Next, we shall study the remainder term

h`(s) :=
T (s)− Σ`(s)

s`
(15)

of the asymptotic expansions in Theorem A. Notice that in the case of assertion (b), h`(s) = s−`D(s), where
we denote

D(s; |ε) := D(s+ ϑε) = exp

(
λ

∫ s+ϑε

1

Va(t)

Pε(t)
dt

)
. (16)

The following two lemmas give the basis of induction k = 0 in assertion (b) and (a) of Theorem A,
respectively.

Lemma 2.8. For each ` ∈ Z+ and y > 0 small enough, there exists ε0 > 0 such that y`D(s)
s`D(y)

and s−`D(s)

tend to zero, as s→ 0+, uniformly on [0, ε0]×Ka × [λ0,∞).

Proof. Note that it suffices to prove the first limit as y < 1 is fixed and D(y) < 1. By definition we have
that y`D(s)

s`D(y)
= exp(−B(s, y; ε, a, λ)), with

B(s, y; ε, a, λ) := ` log(s/y) + λ

∫ y

s

Va(x+ ϑε)

Pε(x+ ϑε)
dx.

We must prove that there exists ε0 > 0 such that lim
s→0+

B(s, y; ε, a, λ) = +∞, uniformly on [0, ε0] ×Ka ×
[λ0,∞). By hypothesis, due to the compactness of Ka, there exists a positive constant m1 such that
Va(x) > m1, for any x ∈ [s − ϑε, y − ϑε] and a ∈ Ka. Recall that ϑε is the biggest root of Pε, which tends
to zero as ε→ 0, and that ϑε = σ (|ε), with σ analytic at zero. We have that Pε(x+ ϑε) = xQ(x, |ε). Due to
Q(0, 0) = 0, for every m0 > 0 there exists ε0 > 0 such that |Q(x, |ε)| 6 m0, for all ε, x ∈ [0, ε0]. Hence,

B(s, y; ε, a, λ) = ` log(s/y) + λ

∫ y

s

Va(x+ ϑε)

xQ(x+ ϑε)
dx >

(
λ0
m1

m0
− `
)

log(y/s).

Taking m0 small enough, we see that the right hand side tends to +∞, as s→ 0+.

We show now the case k = 0 in assertion (a) of Theorem A. To this end we write, see (15), h` = f`
g`

with

f`(s) :=
T (s)− Σ`(s)

D(s)
and g`(s) :=

s`

D(s)
, (17)

where D(s) is defined in (16).

Lemma 2.9. For each ` ∈ Z+, there exists ε0 > 0 such that h`(s) tends to zero, as s→ 0+, uniformly on
Kx × [0, ε0]×Ka × [λ0,∞)×U1.

Proof. This will follow by applying the uniform L’Hôpital’s rule stated in Appendix A taking f` and g`
as in (17). To this end, we must check that these functions verify the five conditions in Proposition 4.1.
Condition (a) is obvious because f` and g` are differentiable for s > 0. Using that QΘλD = VD and
applying Lemma 2.3, we deduce that

Θλf` =
−s`+1F`+1

QD
and Θλg` =

−s`V`
QD

.

In particular, ∂sg` = −λs
`−1V`
QD < 0, for s > 0, which shows condition (b). Moreover,

∂sf`
∂sg`

=
Θλf`
Θλg`

= s
F`+1

V`

12



tends to zero, as s → 0+ uniformly on [0, ε0] × Ka × [λ0,∞) × U1, for some ε0 > 0 small enough. This
follows from Lemma 2.5, taking into account that F`+1 ∈ F1

0 , thanks to Proposition 2.7. This shows
that (c) and (d) are verified. It only remains to check (e). The first part follows from Lemma 2.8. To
see the second part, we must verify that, for each fixed s > 0 small enough, f`(s)

g`(s)
= T −Σ`

s`
is bounded on

Kx × [0, ε0]×Ka × [λ0,∞)×U1. This follows from Proposition 2.7 and the expression

T (s) = D(s)

∫ x0

s+ϑε

U(x)

Pε(x)

dx

D(x− ϑε)
,

on account of sup
{
|U(x)|;x ∈ [s + ϑε, x0]

}
6 ‖U‖, the monotonicity of the Dulac map D(x) and the

inequalities s+ ϑε 6 x 6 x0 6 1. We can thus apply Proposition 4.1, which shows that h`(s) = f`(s)
g`(s)

tends
to zero, as s→ 0+, uniformly on Kx × [0, ε0]×Ka × [λ0,∞)×U1, as desired.

The induction step, for assertions (a) and (b) in Theorem A, will be treated jointly:

Proposition 2.10. For each `, k ∈ Z+, there exist v`k ∈ F0
k and w`k ∈ F1

k such that

Θk
λh` = v`kh`+kµ + sw`k.

Proof. We proceed by induction on k. For k = 1, we have that

Θλh` =
Θλf`
g`
− h`

Θλg`
g`

=
−sF`+1 + h`V`

Q
.

Since T = Σ` + s`h` = Σ`+µ + s`+µh`+µ, we get h` = sµh`+µ + sΣµ` , with Σµ` :=
Σ`+µ−Σ`
s`+1 =

∑µ−1
j=0 c`+1+js

j .
Therefore,

Θλh` =
sµV`
Q︸ ︷︷ ︸
v`,1

h`+µ + s
V`Σµ` − F`+1

Q︸ ︷︷ ︸
w`,1

.

It is clear that v`,1 ∈ F0
1 , because

sµ

Q ∈ F
0
1 and V` ∈ F0

0 , by Lemma 2.5. On the other hand, by Lemma 2.3,

V`Σµ` = s−`−1
(
VΣ`+µ − VΣ`

)
− `

λ
QΣµ`

= s−`−1
(
QΘλΣ`+µ −QΘλΣ` − s`+µ+1F`+µ+1 + s`+1F`+1

)
− `

λ
QΣµ`

= Qs−`−1Θλ(s`+1Σµ` )− sµF`+µ+1 + F`+1 −
`

λ
QΣµ` = Q(

1

λ
Σµ` + ΘλΣµ` )− sµF`+µ+1 + F`+1.

Hence w`,1 = 1
λΣµ` + ΘλΣµ` −

sµ

Q F`+µ+1 ∈ F1
1 , thanks to Lemma 2.5 and Proposition 2.7. We now complete

the inductive step:

Θk+1
λ h` = Θλ(Θk

λh`) = Θλ(v`kh`+kµ + sw`k) = Θλ(v`k)h`+kµ + v`kΘλh`+kµ + s
(w`k
λ

+ Θλw`k
)

= Θλ(v`k)sµh`+(k+1)µ + sΘλ(v`k)Σµ`+kµ + v`k[v`+kµ,1h`+(k+1)µ + sw`+kµ,1] + s
(w`k
λ

+ Θλw`k
)

=
(
Θλ(v`k)sµ + v`kv`+kµ,1

)︸ ︷︷ ︸
v`,k+1

h`+(k+1)µ + s
(
Θλ(v`k)Σµ`+kµ + v`kw`+kµ,1 +

w`k
λ

+ Θλw`k
)

︸ ︷︷ ︸
w`,k+1

.

Here v`,k+1 ∈ F0
k+1 and w`,k+1 ∈ F1

k+1 on account of the inductive hypothesis, Lemma 2.5 and Proposi-
tion 2.7. This completes the proof.
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Proof of Theorem A. The coefficients cj , for j ∈ Z+, are given in Definition 2.1. Proposition 2.7 shows
that there exists ε0 > 0, such that c0, c1, . . . , c` are analytic on [0, ε0] ×Ka× [λ0,∞) and are uniformly
bounded linear operators on U . By Proposition 2.10, we get

Θr
λh` = v`rh`+rµ + sw`r,

with v`r and w`r bounded on [0, s0]× [0, ε0]× [λ0,∞)× Ka×U1, for some s0 > 0 and ε0 > 0, thanks to
assertion (e) in Lemma 2.5. Notice that the linearity of w`r on U implies that in the case (b), where U ≡ 0,
we have w`r ≡ 0. We conclude that the limits, as s tends to zero, in assertions (a) and (b) of Theorem A
are zero uniformly on the corresponding parameters, using Lemma 2.9 and Lemma 2.8, respectively.

Proof of Corollary A. It is easy to check that on the half planes ε > 0 and ε 6 0 the corresponding
functions Q(s; |ε), given by (12), satisfy hypothesis (H1) and (H2). To show assertion (a), we apply twice
assertion (a) of Theorem A, with ρ− = 1 and ρ+ = µ, to deduce that

y(s+ ϑε) =


∑`
j=0 c

−
j

(
ε, a, λ, U

)
sj + s`h−` (s), for ε 6 0,∑`

j=0 c
+
j

(
ε1/µ, a, λ, U

)
sj + s`h+

` (s), for ε > 0,

where the functions h±` (s), depending on the parameters (x0, ε, a, λ, U), satisfy

Θr
λh
±
` (s)→ 0, as s→ 0+,

uniformly on Kx × [−ε0, ε0]×[λ0,∞)×Ka ×U1, for r = 0, 1, . . . , k. The flatness property of h±` , together
with the analyticity of c±j

(
ε, a, λ, U

)
on
(
[−ε0, ε0]∩ {±ε > 0}

)
×Ka×[λ0,∞)×U , easily implies that, for all

j ∈ Z+, the functions

cj(ε, a, λ, U) :=

{
c−j (ε, a, λ, U), for ε 6 0,

c+j (ε1/µ, a, λ, U), for ε > 0,

are continuous at ε = 0. Moreover, the coefficients c0, . . . , cm−1 are identically zero, for ε 6 0. This follows
from the fact that U(x) = xmŪ(x) and ϑε = 0, for ε 6 0, by using the recursive definition of cj and
Remark 2.2. Finally, the derivative properties of the function

h`(s;x0, ε, a, λ, U) :=

{
h−` (s;x0, ε, a, λ, U), for ε 6 0,

h+
` (s;x0, ε, a, λ, U), for ε > 0,

follow from the corresponding properties of h±` . Assertion (b) in Corollary A is deduced from assertion (b)
in Theorem A in a similar way.

3 Temporal results

This section is dedicated to the proof of Theorem B, which follows by applying Theorem A. It will be clear
now why we need uniformity on λ ∈ [λ0,∞) and U varying in the Banach space U .

Proof of Theorem B. Consider `, k ∈ Z+ and a compact set Ka ⊂ A. We decompose the given function
Ua(x, y) =

∑
n>1 Un,a(x)yn−1, with Un,a ∈ U , for all n ∈ N and a ∈ Ka. Since Ua(x, y) is absolutely

convergent on |x|, |y| 6 1, the series
∑
n>1 ‖Un,a‖yn and all its y∂y derivatives have convergence radius at

least 1. Consequently, ∑
n>1

nr‖Un,a‖ <∞, for all r ∈ Z+ and a ∈ Ka. (18)
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Let y(x; s) be the trajectory of the vector field Pε(x)∂x − Va(x)y∂y, with initial condition y(s; s) = 1.
Note that the Dulac time in the statement is given by

T (s; |ε, a) =

∫ 1

s+ϑε

Ua
(
x, y(x; s)

)
y(x; s)

Pε(x)
dx =

∫ 1

s+ϑε

∑
n>1

Un,a(x)yn(x; s)

Pε(x)
dx.

We define

Tn(s) :=

∫ 1

s

Un,a(x)yn(x; s)

Pε(x)
dx,

whose derivative satisfies

∂sTn(s) =

∫ 1

s

Un,a(x)∂sy
n(x; s)

Pε(x)
dx− Un,a(s)

Pε(s)
=
nVa(s)

Pε(s)
Tn(s)− Un,a(s)

Pε(s)
,

by using ∂sy(x; s) = y(x; s)Va(s)
Pε(s)

. This shows that Tn(x) is the trajectory with initial condition Tn(1) = 0

of the vector field obtained from (6) by replacing U(x) by Un,a(x), Va(x) by Va(x)
Va(0) and λ by nVa(0). We can

thus apply Theorem A, with the given `, k ∈ Z+, the compact set Ka ⊂ A, λ0 := inf{Va(0) : a ∈ Ka} > 0
and U ∈ U to obtain the asymptotic expansion of Tn(s) := Tn(s+ ϑε) at s = 0. So, there exists ε0 > 0 and

Tn(s; |ε, a) =
∑̀
j=0

cj
(
|ε, a, nVa(0), Un,a

)
sj + s`h`

(
s; ε, a, nVa(0), Un,a

)
,

where the coefficients cj depend analytically on (|ε, a) ∈ [0, ε0]×Ka. Moreover,

γj := sup
{
|cj
(
ε, a, λ, U

)
| : (ε, a, λ, U) ∈ [0, ε0]×Ka × [λ0,+∞)×U1

}
< +∞

and, for all positive s, small enough,

Mr
` (s) := sup

{
|Θr
λh`
(
s; ε, a, λ, U

)
| : (ε, a, λ, U) ∈ [0, ε0]×Ka × [λ0,+∞)×U1

}
< +∞,

withMr
` (s)→ 0, as s→ 0+, for r = 0, 1, . . . , k. In particular, for (ε, a, n) ∈ [0, ε0]×Ka×N and r = 0, 1, . . . , k

we have

|cj(|ε, a, nVa(0), Un,a)| 6 γj‖Un,a‖ and |Θr
λh`(s; ε, a, nVa(0), Un,a)| 6Mr

` (s)‖Un,a‖. (19)

Here, it is crucial that Theorem A holds for λ unbounded and U varying in the Banach space U .
We define at this point the coefficients

cj(|ε, a) :=
∑
n>1

cj(|ε, nVa(0), a, Un,a), for all j ∈ Z+,

which are well-defined because the series are uniformly convergent on (|ε, a) ∈ [0, ε0]×Ka thanks to (18), with
r = 0 and the first inequality in (19). In particular, these coefficients are analytic on (|ε, a) ∈ [0, ε0]×Ka.
On the other hand, by using the second inequality in (19), the series

h`(s; ε, a) :=
∑
n>1

h`(s; ε, a, nVa(0), Un,a)

is uniformly convergent on (s, |ε, a) ∈ [0, s0]×[0, ε0]×Ka, for s0 small enough, and it tends to zero, as s→ 0+,
uniformly on (ε, a). Hence, the series∑

n>1

Tn(s; |ε, a) =
∑
n>1

∑̀
j=0

cj(|ε, a, nVa(0), Un,a)sj + s`
∑
n>1

h`(s; ε, a, nVa(0), Un,a)

=
∑̀
j=0

cj(|ε, a)sj + s`h`(s; |ε, a)
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is uniformly convergent on (s, |ε, a) ∈ [0, s0]×[0, ε0]×Ka, because it is the sum of `+ 2 uniformly convergent
series. For this reason, we can commute summation and integration in the following expression of the Dulac
time

T (s; |ε, a) =

∫ 1

s+ϑε

∑
n>1

Un,a(x)yn(x; s)

Pε(x)
dx =

∑
n>1

Tn(s; |ε, a).

Accordingly, T (s; |ε, a) =
∑`
j=0 cj(|ε, a)sj + s`h`(s; |ε, a). Finally, taking λ = nVa(0) and (10) into account,

for r = 1, 2, . . . , k, the series∑
n>1

|Θr
1h`(s; ε, a, nVa(0), Un,a)| = V ra (0)

∑
n>1

nr |Θr
λh`(s; ε, a, nVa(0), Un,a)| 6 Va(0)rMr

` (s)
∑
n>1

nr‖Un,a‖

is uniformly convergent in (s, |ε, a) and tends to zero, as s→ 0+, uniformly on (|ε, a), thanks to (18) and (19).
Recall that uniform convergence of a series of functions does not imply the uniform convergence of its
derivatives. However, if {fn} is a sequence of functions, differentiable on [a, b] and such that {fn(x0)}
converges for some point x0 ∈ [a, b] and {f ′n} converges uniformly on [a, b], then {fn} converges uniformly
on [a, b] to a function f and f ′(x) = limn→∞ f ′n(x), for all x ∈ [a, b] (see [12, Theorem 7.17]). Taking this
into account, we can assert that Θr

1h`(s; ε, a) =
∑
n>1 Θr

1h`(s; ε, a, nVa(0), Un,a) tends to zero, as s → 0+

uniformly on [0, ε0]×Ka, for all r = 0, 1, . . . , k. This concludes the proof of the result.

The proof of Corollary B is completely analogous to that of Corollary A.

4 Application to Loud’s system

Proof of Theorem C. To study the passage through the unfolding of saddle-node at infinity we use the
chart of RP2 given by (z, w) =

(
1−u
v , 1

v

)
. In these coordinates the Loud differential system (1) writes as

1

w

(
z
(
1− F −Dz2 + (2D + 1)zw − (D + 1)w2

)
∂z + w

(
−F −Dz2 + (2D + 1)zw − (D + 1)w2

)
∂w
)
,

which is a meromorphic vector field with Darboux first integral

I(z, w) =
w

z

(
1− 2(F − 1)

g(z, w)

z2

) 1
2(F−1)

,

where g(z, w) := (2D+1)
(2F−1)D zw −

(D+1)
2FD w2 − 1

2D . One can verify that the local change of coordinates given by{
x =

z√
g(z, w)

, y =
w√
g(z, w)

}
(20)

brings the above vector field to (13)

1

yUa(x, y)

(
(x2 − ε)x∂x− (2F − x2)y∂y

)
,

with a := (D,F ), Ua(x, y) :=
(

(2D+1)
2(2F−1)xy −

(D+1)
4F y2 − D

2

)−1
2

and particularizing ε := 2(F−1). In these local
coordinates, the period annulus is in the quadrant y > 0 and x > ϑε, where ϑε is given by (12) with µ = 2.
Working on a compact subset Ka of

{
D ∈ (−1, 0), F > 1

2}, we see that Ua(x, y) has an absolutely convergent
Taylor series at (x, y) = (0, 0) on |x|, |y| 6 r for some r > 0 depending only on Ka. By rescaling the local
coordinates, we can assume that r = 1. Let Φ be the local diffeomorphism such that (z, w) = Φ(x, y), i.e.
the one obtained by inverting (20).
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Since the Loud system (1) is invariant by the symmetry (u, v) 7−→ (u,−v), half of the period function
is the Dulac time T of the singular point at infinity between transverse sections Σ1 := {v = 0, u ≈ 1}
and Σ2 := {v = 0, u ≈ −∞}. We decompose it in three parts. Let T2(s) be the local Dulac time
between the normalized transverse sections Σn1 := Φ({y = 1}) and Σn2 := Φ({x = 1}) starting at the point
Φ(s + ϑε, 0), see Figure 4. Let T1(s) be the time that the trajectory starting at Σ1 spends to arrive to
the point Φ(s + ϑε, 1) in Σn1 and let T3(s) be the time that the trajectory starting at the point Φ(1, s)
spends to arrive to Σ2. Finally, let D(s) be the Dulac map between Σn1 and Σn2 , i.e. D(s) is defined so
that the trajectory starting at Φ(s + ϑε, 1) intersects Σn2 at Φ(1,D(s)). By construction, see Figure 4,
we have T (s) = T1(s) + T2(s) + T3(D(s)). We now examine the asymptotic expansion of each piece. To
this end, we denote by I(A) the space of functions h(s; a), analytic on s ∈ (0, s0), such that h(s; a) and
s∂sh(s; a) tend to zero, as s → 0+ uniformly, for a varying in any compact subset of A. Observe that this
space is stable with respect to addition and multiplication. We apply Corollary B (with ` = k = 1) to
obtain ε0 > 0 and a uniform asymptotic expansion T2(s) = c2,0 + c2,1s + sh2(s), with h2 ∈ I(A) and c2,j
continuous on A := Ka ∩ {F ∈ (1− ε0, 1 + ε0)}. As we already remarked just before Theorem A, the graph
of the Dulac map D(s) is a trajectory of the vector field x(x2 − ε)∂x+ 2F (1− x2

2F )y∂y. Hence, by applying
assertion (b) of Corollary A with λ = 2F > 1, we deduce that D(s) = sh0(s), with h0 ∈ I(A). On the other
hand, the time function T3(s) is analytic in s, whereas T1(s) is an analytic function on s composed with
the continuous function (s, ε) 7→ s + ϑε. Accordingly, they can be written as Ti(s) = ci,0 + ci,1s + shi(s),
with hi ∈ I(A) and ci,0 and ci,1 continuous on A, for i = 1, 3. Note that T3

(
D(s)

)
= c3,0 + sĥ3(s), with

ĥ3(s) := c3,1h0(s) + h0(s)h3

(
sh0(s)

)
and it can be easily checked that ĥ3 ∈ I(A). Summing up the three

terms we obtain that the period function of the Loud system is of the form

P (s;D,F ) = 2T (s;D,F ) = c0(D,F ) + c1(D,F )s+ sh(s;D,F ),

with h := 2(h1 +h2 + ĥ3) ∈ I(A) and ci continuous on A. On the other hand, restricting to A∩{F ∈ ( 1
2 , 1)}

the singularity at (x, y) = (ϑε, 0) is a linearizable saddle and we can apply [5, Proposition 5.2] to obtain
the asymptotic expansion of the period function working with a different parametrization, say ŝ. The two
parametrizations differ by composition with a diffeomorphism ŝ = r(s) such that r(0) = 0 and r′(0) =
α(D,F ) 6= 0, for F = 1. In this other parametrization the coefficient ĉ1(D,F ) of ŝ is explicitly calculated

ĉ1(D,F ) =

√
π(2D + 1)√
F (D + 1)3

Γ((3F − 1)/(2F ))

Γ((4F − 1)/(2F ))
.

Since c1(D,F ) = α(D,F )ĉ1(D,F ) and one can verify that

lim
F→1−

ĉ1(D,F ) =
2(2D + 1)

(D + 1)
3
2

,

it follows that c1(D, 1) 6= 0, for D ∈ (−1, 0) \ {− 1
2}. On account of the continuity of c1 and h ∈ I(A), we

conclude that
P ′(s;D,F ) = c1(D,F ) + h(s;D,F ) + sh′(s;D,F ) 6= 0,

in a neighbourhood of any point (s,D, F ) = (0, D0, 1) in (0, 1)× (−1, 0)× ( 1
2 , 2), with D0 ∈ (−1, 0) \ {−1

2}.
This concludes the proof of the result.

Appendix A

In our approach to the proof of Theorem A, the use of L’Hôpital’s rule with uniformity in the parameters
is fundamental. We have not found such a version in the literature. For this reason we present here the
precise statement that we need together with a proof of it.
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Proposition 4.1. Consider two functions fν , gν : (a, b) −→ R depending on a parameter ν belonging to an
arbitrary topological space Λ and verifying the following:

(a) fν and gν are differentiable on (a, b),

(b) g′ν(x) 6= 0, for all x ∈ (a, b) and ν ∈ Λ,

(c) for all ν ∈ Λ, there exists Lν ∈ R such that lim
x→a+

f ′ν(x)
g′ν(x) = Lν uniformly on ν ∈ Λ,

(d) sup {|Lν |; ν ∈ Λ} < +∞,

(e) there exists c ∈ (a, b) such that, for each y ∈ (a, c), we have that lim
x→a+

∣∣∣ gν(x)
gν(y)

∣∣∣ = +∞, uniformly on

ν ∈ Λ and sup
{∣∣∣ fν(y)

gν(y)

∣∣∣ ; ν ∈ Λ
}
< +∞.

Then lim
x→a+

fν(x)
gν(x) = Lν , uniformly on ν ∈ Λ.

Proof. For a given ε > 0, we must find δ > 0 such that, if x ∈ (a, a + δ), then
∣∣∣ fν(x)
gν(x) − Lν

∣∣∣ < ε, for all

ν ∈ Λ. Let us take ε1 := min
(

ε
M+3 , 1

)
, whereM := sup

ν∈Λ
|Lν |, which is well defined thanks to assumption (d).

From (c) there exists δ1 > 0 such that, if c ∈ (a, a+ δ1), then
∣∣∣ f ′ν(c)
g′ν(c) − Lν

∣∣∣ < ε1, for all ν ∈ Λ. Let us fix any
y ∈ (a, a+ δ1). By the Mean Value Theorem, for each x ∈ (a, y), there exists c = cx,y,ν ∈ (x, y) ⊂ (a, a+ δ1)

such that fν(x)−fν(y)
gν(x)−gν(y) =

f ′ν(c)
g′ν(c) . Accordingly,∣∣∣∣∣∣

fν(x)
gν(x) −

fν(y)
gν(x)

1− gν(y)
gν(x)

− Lν

∣∣∣∣∣∣ =

∣∣∣∣f ′ν(c)

g′ν(c)
− Lν

∣∣∣∣ < ε1. (21)

On the other hand, the assumption (e) guarantees that there exists zy ∈ (a, y) such that, if x ∈ (a, zy), then∣∣∣∣fν(y)

gν(x)

∣∣∣∣ < ε1 and
∣∣∣∣gν(y)

gν(x)

∣∣∣∣ < ε1 , for all ν ∈ Λ. (22)

Here, we also used that fν(y)
gν(x) = fν(y)

gν(y)
gν(y)
gν(x) tends to zero uniformly on ν ∈ Λ, as x → a+. Note then that∣∣∣(Lν ± ε1) gν(y)

gν(x)

∣∣∣ < (|Lν |+ ε1

)
ε1, and thus

−
(
|Lν |+ ε1

)
ε1 < (Lν ± ε1)

gν(y)

gν(x)
<
(
|Lν |+ ε1

)
ε1. (23)

The second inequality in (22) shows in particular that 1− gν(y)
gν(x) > 0, because ε1 < 1, so that, from (21), we

get

(−ε1 + Lν)

(
1− gν(y)

gν(x)

)
+
fν(y)

gν(x)
<
fν(x)

gν(x)
< (ε1 + Lν)

(
1− gν(y)

gν(x)

)
+
fν(y)

gν(x)
.

Therefore,

−ε1 − (Lν − ε1)
gν(y)

gν(x)
+
fν(y)

gν(x)
<
fν(x)

gν(x)
− Lν < ε1 − (Lν + ε1)

gν(y)

gν(x)
+
fν(y)

gν(x)
.

From this, on account of (23) and the first inequality in (22), we get that

−2ε1 − (|Lν |+ ε1)ε1 <
fν(x)

gν(x)
− Lν < 2ε1 + (|Lν |+ ε1)ε1.
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Accordingly, ∣∣∣∣fν(x)

gν(x)
− Lν

∣∣∣∣ < ε1(2 + |Lν |+ ε1) < ε1(3 + |Lν |) < ε1(3 +M) < ε,

as desired, and so, taking δ = zy − a, the result follows.

Appendix B

In this section we recall the notions of Darboux and Liouville local integrability of an analytic family
Yλ = Aλ(x, y)∂x +Bλ(x, y)∂y of planar vector fields defined on some open subset U ⊂ R2 and parametrized
by λ belonging to another open subset V ⊂ Rn. For each λ ∈ V , we consider the dual 1-form ωλ =
−Bλ(x, y)dx+Aλ(x, y)dy. The family {Yλ, λ ∈ V } can also be thought of as a single analytic vector field Y
defining a one-dimensional foliation on U ×V . In the same vein we can also think of the family {ωλ, λ ∈ V }
as a single 1-form ω on U × V , but in general it is not integrable (i.e. it does not define a codimension one
foliation). From this point of view, ωλ is the restriction of ω to the slice λ.

Definition 4.2. The unfolding Yλ is locally Darboux integrable if the dual 1-form ωλ admits a local mero-
morphic integrating factor gλ(x, y) which is analytic in λ, i.e. such that d(gλωλ) = 0. The unfolding Yλ
is locally Liouville integrable if there exists an analytic family ηλ of local meromorphic differential 1-forms
such that dωλ = ωλ ∧ ηλ and dηλ = 0. �

Remark 4.3. Notice that Darboux integrability implies Liouvillian integrability because the logarithmic
derivative ηλ := d log gλ = dgλ

gλ
of a meromorphic integrating factor gλ of ωλ is closed and satisfies dωλ =

ωλ ∧ ηλ. Moreover, the equality gλdωλ = ωλ ∧ dgλ implies that the zeros and poles of gλ are invariant by
ωλ. On the other hand, if ωλ is Liouville integrable, then gλ = exp(

∫
ηλ) is a (not necessarily meromorphic)

integrating factor of ωλ. �

According to [11], any analytic unfolding of a saddle-node (i.e. an analytic family of vector fields with a
saddle-node singularity at some parameter value λ0) of codimension µ > 1 is analytically orbitally equivalent
to a (non unique) unfolding in the following prenormal form:

Yλ(x, y) = Pλ(x)∂x +
(
Pλ(x)R0,λ(x) +R1,λ(x)y + y2R2,λ(x, y)

)
∂y, (24)

where Pλ(x) = xµ+1 + νµ−1(λ)xµ−1 + · · ·+ ν1(λ)x+ ν0(λ), with Pλ0(x) = xµ+1, R1,λ(x) = 1 + a(λ)xµ and
R0,λ and R2,λ are germs of holomorphic functions. The dual form of the vector field Yλ is

ωλ = Pλ(x)dy −
(
Pλ(x)R0,λ(x) + yR1,λ(x) + y2R2,λ(x, y)

)
dx.

Remark 4.4. If R2,λ(x, y) ≡ 0 (respectively, R0,λ(x) ≡ 0 and R2,λ(x, y) = yk−1R̄2,λ(x), for some k > 1)
then ωλ is Liouville integrable with ηλ = −R1,λ(x)+P ′λ(x)

Pλ(x) dx (respectively, ηλ =
kR1,λ(x)−P ′λ(x)

Pλ(x) dx−(k+1)dyy ).
On the other hand, if R0,λ ≡ 0 and R2,λ ≡ 0, then ωλ is Darboux integrable with inverse integrating factor
gλ(x, y) = yPλ(x). �

The next result shows that the converse of the last assertion in the previous remark is also true.

Proposition 4.5. Any locally Darboux integrable saddle-node unfolding is analytically orbitally equivalent
to (24) with R0,λ ≡ 0 and R2,λ ≡ 0.

Proof. By the preparation theorem in [11] we can assume that the saddle-node unfolding has the form (24),
although as a matter of fact we will only use that R1,λ0(0) 6= 0. Let gλ(x, y) be a meromorphic integrating
factor of ωλ. We claim that the singular point (0, 0, λ0) ∈ Rn+2 of Y possesses an analytic center manifold. In
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this regard it is well known (see for instance [1]) that there exists a unique formal series y = ĉλ(x) ∈ C[[x, λ]]
satisfying

dy

dx
=
Pλ(x)R0,λ(x) + yR1,λ(x) + y2R2,λ(x, y)

Pλ(x)
.

Thus, by applying the Center Manifold Theorem (see for instance [3, 4]), if the claim is not true then all the
invariant analytic hypersurfaces of Y passing through (0, 0, λ0) ∈ Rn+2 are contained in Pλ(x) = 0. Consider
the prime decomposition of Pλ =

∏
j P

rj
j,λ in the ring of convergent complex power series at (x, λ) = (0, λ0)

with gcd(Pi,λ, Pj,λ) = 1 if i 6= j. Since the zeros and poles of a meromorphic integrating factor define
analytic invariant varieties (recall Remark 4.3), we can assert that

gλ(x, y) = uλ(x, y)P̃λ(x) with uλ a unity and P̃λ :=
∏
j

P
kj
j,λ, for some kj ∈ Z.

For convenience, let us write uλ = exp(tλ) for some analytic function tλ = tλ(x, y). Then some computations
show that

0 =
1

gλ
d(gλωλ) = dωλ +

dgλ
gλ
∧ ωλ = dωλ +

dtλ +
∑
j

kj
P ′j,λ
Pj,λ

dx

 ∧ ωλ
=

P ′λ +R1,λ + ∂y(y2R2,λ) + Pλ∂xtλ + (R0,λPλ +R1,λy +R2,λy
2)∂ytλ + Pλ

∑
j

kj
P ′j,λ
Pj,λ

 dx ∧ dy. (25)

Taking the limit (x, y, λ) −→ (0, 0, λ0) above we get that R1,λ0(0) = 0. This is a contradiction and so the
claim is true. By a suitable local change of coordinates we can assume that the center manifold is given by
y = 0. Accordingly, R0,λ ≡ 0 and the integrating factor must write as gλ(x, y) = uλ(x, y)P̃λ(x)yk0 , with
uλ = exp(tλ) and P̃λ as before, and k0 ∈ Z. Next we will use again that 1

gλ
d(gλωλ) = 0 taking advantage of

the previous computation. To this end note that dgλ
gλ

= dtλ +
∑
j kj

P ′j,λ
Pj,λ

dx+ k0
dy
y . Consequently, in order

to obtain 1
gλ
d(gλωλ), it suffices to add the term k0

dy
y ∧ ωλ = k0(R1,λ + yR2,λ) into (25) because R0,λ ≡ 0.

Evaluating at y = 0 the equality that we thus obtain we get

P ′λ + (1 + k0)R1,λ + Pλsλ + Pλ
∑
j

kj
P ′j,λ
Pj,λ

= 0,

where sλ(x) := ∂xtλ(x, 0). Taking the limit (x, λ) −→ (0, λ0) above and using that R1,λ0(0) 6= 0, we deduce
that k0 = −1. Therefore, on account of Pλ =

∏
j P

rj
j,λ, the above expression yields to

−sλ =
P ′λ
Pλ

+
∑
j

kj
P ′j,λ
Pj,λ

=
∑
j

(kj + rj)
P ′j,λ
Pj,λ

.

Since sλ(x) is analytic and the factors Pj,λ are pairwise coprime, the above equality implies that kj + rj = 0
for all j and that sλ(x) = ∂xtλ(x, 0) = ∂x log

(
uλ(x, 0)

)
is identically zero. The first fact implies that

gλ(x, y) = uλ(x,y)
yPλ(x) , whereas the second one that uλ(x, 0) is a non-zero constant, say vλ. It is clear then that

uλ(x,y)
vλ

= yBλ(x, y) + 1, with Bλ(x, y) an analytic function.

At this point the idea is to use [2, Theorem 2.1] describing what type of first integral admits an arbitrary
Darboux integrable 1-form in terms of the integrating factor. However we can not apply directly this result
because it does not contemplate the parameter case. Instead, we will adapt its proof to our situation by
considering the closed 1-form

Ωλ :=
gλωλ
vλ
−
(
dy

y
− R1,λ(x)

Pλ(x)
dx

)
.
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Taking gλ(x,y)
vλ

= Bλ(x,y)
Pλ(x) + 1

yPλ(x) into account, we get that Ωλ = Aλ(x, y)dx+Bλ(x, y)dy with

Aλ(x, y) :=
y

Pλ(x)

(
R1,λ(x)Bλ(x, y) +

1

vλ
uλ(x, y)R2,λ(x, y)

)
.

In particular, Aλ(x, 0) = 0. This, together with the fact that ∂yAλ(x, y) = ∂xBλ(x, y) with Bλ(x, y)
an analytic function, implies that Aλ(x, y) is in turn analytic. Therefore, since a closed analytic 1-form
must be exact, there exists an analytic function αλ(x, y) such that Ωλ = dαλ. Hence, we conclude that the
function Hλ(x, y) = yeαλ(x,y) exp

(
−
∫ R1,λ(x)

Pλ(x) dx
)
is a first integral of ωλ. Finally, making the local change of

coordinates ȳ = yeαλ(x,y) we obtain that Hλ(x, ȳ) = ȳ exp
(
−
∫ R1,λ(x)

Pλ(x) dx
)
. Consequently ωλ is proportional

to Pλ(x) dȳ −R1,λ(x)ȳ dx. This proves the result.
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