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Abstract

In this paper we investigate the bifurcation diagram of the period function associated to a
family of reversible quadratic centers, namely the dehomogenized Loud’s systems. The local
bifurcation diagram of the period function at the center is fully understood using the results
of Chicone and Jacobs [Bifurcation of critical periods for plane vector fields, Trans. Amer.
Math. Soc. 312 (1989) 433–486]. Most of the present paper deals with the local bifurcation
diagram at the polycycle that bounds the period annulus of the center. The techniques that
we use here are different from the ones in [C. Chicone, M. Jacobs, Bifurcation of critical
periods for plane vector fields, Trans. Amer. Math. Soc. 312 (1989) 433–486] because, while
the period function extends analytically at the center, it has no smooth extension to the poly-
cycle. At best one can hope that it has some asymptotic expansion. Another major difficulty
is that the asymptotic development has to be uniform with respect to the parameters, in order
to prove that a parameter is not a bifurcation value. We study also the bifurcations in the in-
terior of the period annulus and we show that there exist three germs of curves in the parameter
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space that correspond to this type of bifurcation. Moreover we determine some regions in the
parameter space for which the corresponding period function has at least one or two critical
periods. Finally we propose a complete conjectural bifurcation diagram of the period function
of the dehomogenized Loud’s systems. Our results can also be viewed as a contribution to the
proof of Chicone’s conjecture [C. Chicone, review in MathSciNet, ref. 94h:58072].
© 2005 Elsevier Inc. All rights reserved.

1. Introduction, main results and conjectures

In this work we study the bifurcation diagram of the period function associated to a
family of quadratic centers. Chicone [2] has conjectured that if a quadratic system has a
center with a period function which is not monotonic then, by an affine transformation
and a constant rescaling of time, it can be brought to the Loud normal form{

ẋ = −y + Bxy,
ẏ = x + Dx2 + Fy2,

(1)

and that the period function of these centers has at most two critical periods. In fact,
there is much analytic evidence that the conjecture is true (see [5,15,20] for instance).
On the other hand, it is proved in [7] that if B = 0 then the period function of the
center at the origin of system (1) is globally monotonous. So, from the point of view
of the study of the period function, the most interesting stratum of quadratic centers is
the family (1) with B �= 0, which can be brought to B = 1 by means of a rescaling,
i.e., to {

ẋ = −y + xy,

ẏ = x + Dx2 + Fy2.
(2)

This is precisely the family of quadratic centers that we study in this paper and,
following the terminology in [4], we call them dehomogenized Loud’s systems. Note
that the transformation (x, y, t) �−→ (x, −y, −t) preserves the Loud normal form (1)
and so these systems are reversible with respect to the x-axis. In fact any reversible
quadratic center can be brought to Loud normal form by an affine transformation
and a constant rescaling of time (see [22] for instance). Compactifying R2 to the
Poincaré disc, the boundary of the period annulus of the center has two connected
components, the center itself and a polycycle. We call them, respectively, the inner and
outer boundary of the period annulus. It follows (see Lemma 2.7) that the bifurcation
diagram of the period function consists of three parts:

(a) Bifurcations of the period function at the inner boundary (i.e., the center).
(b) Bifurcations of the period function at the outer boundary (i.e., the polycycle).
(c) Bifurcations of the period function in the interior of the period annulus.

For the precise definitions see Section 2. The local bifurcation diagram of the period
function at the inner boundary is fully understood for the quadratic centers using the
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Fig. 1. Numerical bifurcation diagram by Chicone and Jacobs.

results of Chicone and Jacobs [4]. The key point in their result (see Theorem 4.1) is
that the period function extends analytically to the inner boundary because the center
is nondegenerate. It thus admits a Taylor expansion whose coefficients are polynomi-
als on the parameters of the initial system. For system (2), the zero level set of the
first coefficient is an ellipse �C given by 10D2 + 10DF − D + 4F 2 − 5F + 1 = 0
(see Fig. 11) and it corresponds to the local bifurcation diagram of the period func-
tion at the inner boundary. Around 1990, Chicone and Jacobs obtained a numerical
computation of the complete bifurcation diagram, see Fig. 1, in which one can easily
identify the ellipse �C. It also appears a strange kidney-shaped curve that would cor-
respond to a numerical approximation of the local bifurcation diagram of the period
function at the outer boundary. The main goal of this paper is to determine analytically
this set.

One encounters two major difficulties in the study of the bifurcation diagram of
the period function at the outer boundary of the period annulus. The first one is that,
contrary to the situation in the inner boundary, the period function does not extend
smoothly on the outer boundary. At best one can hope that it has some asymptotic
development. The second one is that in order to prove that a parameter is not a
bifurcation value one needs an asymptotic development which is uniform with respect
to the parameters. This is not easily achieved because the shape of the polycycle in
the outer boundary changes as the parameters vary.
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Fig. 2. Bifurcation diagram of the period function at the outer boundary.

In order to formulate our main result let �U be the union of dotted straight lines in
Fig. 2. Consider also the bold curve �B. (Here the subscripts B and U stand for bifur-
cation and unspecified, respectively.) The curve �U corresponds, except for the segment
(−1, −1/2)×{1/2}, to bifurcations of the phase portrait that affect the outer boundary
of the period annulus (see Section 3.1). The curve �B is the union of some explicit
straight segments and a curve that joins the points (−3/2, 3/2) and (−1/2, 1). To be
more precise, let us advance that this curve is defined as the zero level set of an explicit
function that we introduce in Section 3.2.1. To draw it in Fig. 2 we have computed it
numerically. Analytically, among other properties that are gathered in Proposition 3.11,
we have proved that it is the graphic of an analytic function D = G(F ). From Proposi-
tion 3.11 it follows in particular that �B is a Jordan curve. We can consider therefore the
bounded and unbounded components of R2 \ �B, which we denote by DB and IB (for
decreasing and increasing), respectively. With this notation we can now state our main
result:

Theorem A. Denoting � = (D, F ), let {X�, � ∈ R2} be the family of vector fields
in (2) and consider the period function of the center at the origin. Then the open set
R2 \ {�B ∪ �U} corresponds to local regular values of the period function at the outer
boundary of the period annulus. In addition,

(a) If �0 ∈ IB \ �U then the period function of X�0
is monotonous increasing near the

outer boundary.
(b) If �0 ∈ DB \ �U then the period function of X�0

is monotonous decreasing near
the outer boundary.
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Fig. 3. Conjectural bifurcation diagram of the period function.

Finally, the parameters in �B are local bifurcation values of the period function at
the outer boundary of the period annulus.

We have not determined the character of the parameters in �U. We conjecture that
they are not bifurcation values at the outer boundary except for the segment {0} ×
[0, 1/2]. The numerical picture in Fig. 1 fits relatively well with the bifurcation curve
�B. There are, however, some striking differences. In particular, unlike the numerical
picture, most parts of the bifurcation curve are straight segments.

The combination of the results of Chicone and Jacobs in [4] with the ones that we
obtain in the present paper lead us to formulate the following conjecture about the
complete bifurcation diagram (see Fig. 3) of the period function of the dehomogenized
Loud’s systems:
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Conjecture. The bifurcation diagram of the period function of the dehomogenized
Loud’s family (2) consists in the union of the following curves:

(a) The ellipse �C, which corresponds to the local bifurcation values at the inner
boundary.

(b) The Jordan curve �B given in Theorem A together with the segment {0} ×[0, 1/2],
which corresponds to the local bifurcation values at the outer boundary.

(c) Three simple curves �1, �2 and �3 that connect L1 with (−2, 2), L2 with (0, 0)

and L3 with (−3/2, 3/2), respectively, which correspond to the local bifurcation
values in the interior. �

The exact values of the parameters Li mentioned above are given in (36) and,
following the terminology in [4], they correspond to the three weak centers of order
two of system (2). In fact we prove in Theorem 4.3 the existence of the germs at
Li of the conjectured curves �i . We think of course that the period function of the
dehomogenized Loud’s systems has at most two critical periods. Fig. 3 shows the
regions where we conjecture that there are 0, 1 and 2 critical periods. We also sketch
in balloons the changes in the monotonicity of the period function. Let us note finally
that in the segment {0}× [0, 1/2] occur two different types of bifurcation at the outer
boundary. Indeed, crossing from left to right the segment {0}× [0, 1/4] corresponds to
the “disappearance” of two critical periods, while crossing {0}× [1/4, 1/2] corresponds
to a “rebound” of a critical period (see Fig. 14).

The paper is organized in the following way. In Section 2 we introduce the precise
definitions that we shall use. Section 3 is devoted to the proof of Theorem A. In
all the cases that we study (see Fig. 4), the polycycle in the outer boundary of the
period annulus has one or two singular points, which are saddles. In these cases,
the symmetry of the Loud’s systems allows to split up the period function and to
consider only the time function associated to the passage around one saddle. The most
complicated situations are those in which the period annulus is unbounded because
then the saddle is at infinity and one has to consider meromorphic vector fields. In
order to obtain the asymptotic development mentioned above we use a result proved
in [13], which provides the first terms in the expansion of this type of time function
(see Proposition 3.9). Theorem 3.3 deals with this situation and so it is the most
difficult result to prove. In Section 4 we study the bifurcations of the period function
in the interior of the period annulus and we show that there exist three germs of curves
with this type of bifurcation values. Next, in Section 5, we determine some regions
in the parameter space for which the corresponding period function has at least one
or two critical periods. Finally in Section 6 we comment on the complete conjectural
bifurcation diagram of the period function of the dehomogenized Loud’s systems. We
also pose some precise open questions remaining to prove its validity. In particular,
for certain values of the parameters, the polycycle in the outer boundary of the period
annulus has singular points at infinity that are resonant saddles or saddle-nodes. In these
cases, tools analogous to Proposition 3.9 still have to be developed. The global study
of the bifurcation values of the period function in the interior of the period annulus
seems out of reach for the moment.
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2. Basic definitions

We say that a critical point p of a planar differential system is a center if it has
a punctured neighborhood that consists entirely of periodic orbits surrounding p. The
largest punctured neighborhood with this property is called the period annulus of the
center and it will be denoted by P. Compactifying R2 to the Poincaré disc, the boundary
of P has two connected components, the center itself and a polycycle. We call them,
respectively, the inner and outer boundary of P.

Definition 2.1. Let � be an open subset of Rm and consider a continuous family of
analytic planar vector fields {X�, � ∈ �}. Suppose that, for each � ∈ �, X� has
a center at p� ∈ R2. We say that the family of corresponding period annuli varies
continuously if there exists a continuous family of analytic functions {�� : � ∈ �} such
that, for each � ∈ �, �� : [0, 1] −→ RP2 verifies:

(a) ��(0) = p� and ��(1) belongs to the outer boundary of P�,

(b) ��(s) ∈ P� for all s ∈ (0, 1),

(c) �′
�(s) is transverse to X�

(
��(s)

)
for all s ∈ (0, 1).

Note that �� is the parametrization of a transverse section for X� in P�. In general,
for each fixed � ∈ �, it is always possible to take such a transverse section. Defi-
nition 2.1 requires the existence of one that varies continuously with the parameter.
As we will see in Section 3.1, the period annuli of the family that we study vary
continuously. Next remark shows, however, that this does not always occur.

Remark 2.2. The period annuli of the center at the origin of the 1-parameter family
of potential systems

{
ẋ = −y,

ẏ = x + ax3 + x5,

do not vary continuously. Indeed, it is easy to show that, for a < 2, the period annulus
Pa is the whole plane, while for a�2 there exists a positive constant r (not depending
on a) such that Pa is inside a disk of radius r.

Let {X�, � ∈ �} be a continuous family of analytic vector fields with a center p�.

Assume that the corresponding period annuli vary continuously and consider the family
of transverse sections parametrized by {��, � ∈ �}. For each (s; �) ∈ (0, 1) ×�, we
denote the period of the periodic orbit of X� passing through the point ��(s) by P�(s).

We say then that P� is a parametrization of the period function of X�. Note that P�
is an analytic function on (0, 1). In order to study the qualitative properties of the
period function we consider Z�(s) = P ′

�(s), which is a function defined on (0, 1) for
all � ∈ �. The following definition deals with a slightly more general situation, but the
convenience for this will be clear in a moment.
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Definition 2.3. Let {I�, � ∈ �} be a continuous family of intervals in R and consider
a continuous family of functions {Z� : I� −→ R, � ∈ �}. We say that �0 ∈ � is a
regular value of the family {Z�, � ∈ �} if there exist a neighborhood U of �0 and an
isotopy {h� : I� −→ I�0

, � ∈ U}, with h�0
= id, such that

sgn

(
Z�(s)

)
= sgn

(
Z�0

(
h�(s)

))
(3)

for all s ∈ I� and � ∈ U. A parameter �0 which is not regular is called a bifurcation
value.

Note that the domain of definition of Z� depends on �. To be more precise, by
a continuous family of functions we mean with respect to the induced topology on
∪�∈�I�×{�} as a subset of R × �.

Definition 2.4. Let {X�, � ∈ �} be a continuous family of analytic vector fields with
a center p� and assume that the corresponding period annuli vary continuously.

(a) We say that �0 ∈ � is a regular (respectively, bifurcation) value of the period
function if for some parametrization of the period function P� we have that �0 is
a regular (respectively, bifurcation) value of the family {P ′

� : (0, 1) −→ R, � ∈ �}.
(b) We say that �0 ∈ � is a local regular value of the period function in the interior if

there exists some parametrization of the period function P� such that for any c ∈
(0, 1) there exists a continuously varying neighborhood I�(c) of c in (0, 1) such
that �0 is a regular value of the family {P ′

� : I�(c) −→ R, � ∈ �}. A parameter
which is not a local regular value in the interior is called a local bifurcation value
in the interior.

(c) We say that �0 ∈ � is a local regular value of the period function at the inner
(respectively, outer) boundary if for some parametrization of the period function
P� there exists a continuously varying neighborhood I�(c) of c = 0 (respectively,
c = 1) such that �0 is a regular value of the family {P ′

� : I�(c) ∩ (0, 1) −→ R, � ∈
�}. A parameter which is not a local regular value at the inner (respectively,
outer) boundary is called a local bifurcation value at the inner (respectively, outer)
boundary.

(d) We say that the period function of X�0
is monotonous increasing (respectively,

decreasing) at the inner boundary if for some parametrization of the period function
P� there exists ε > 0 such that P ′

�0
(s) > 0 (respectively, P ′

�0
(s) < 0) for all s ∈

(0, ε). The monotonicity in the outer boundary is defined exactly the same way
using (1 − ε, 1) instead of (0, ε).

Remark 2.5. In the above definitions one can replace “some parametrization” by “any
parametrization”. Indeed, assume for instance that �0 ∈ � is a regular value using P�

and consider another parametrization, say P̃�. Then, following the notation of Def-
inition 2.3, take h̃� := ��0

◦ h� ◦ �−1
� where �� is the Poincaré mapping from the
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transverse section given by �� to the one given by �̃�. Now, taking P�(s) = P̃�
(
��(s)

)
and �′

�(s) > 0 into account, it is easy to verify that �0 is a regular value using P̃�.

Remark 2.6. There are two situations in which it is very easy to decide whether a
parameter �0 is a local regular value or not:

(a) If any neighborhood of �0 contains two parameters �+ and �− such that X�+ and
X�− have different monotonicity at the inner (respectively, outer) boundary, then
�0 is a local bifurcation value at the inner (respectively, outer) boundary.

(b) If for some parametrization of the period function P� there exists a neighborhood
U of �0 and ε > 0 such that P ′

�(s) �= 0 for all � ∈ U and s ∈ (0, ε) (respectively,
s ∈ (1 − ε, 1)), then �0 is a local regular value in the inner (respectively, outer)
boundary.

Lemma 2.7. Let {X�, � ∈ �} be a continuous family of analytic vector fields with a
center p� and assume that the corresponding period annuli vary continuously. Then
the bifurcation diagram of the period function is the union of the local bifurcation
diagrams at the inner and outer boundary and in the interior.

Proof. It is obvious that a regular value is a local regular at the inner and outer bound-
ary and in the interior. Let us prove the converse. Let �0 ∈ � be a local regular value
at the inner boundary, the outer boundary and the interior. Note that by Remark 2.5 we
can assume that we use the same parametrization, say P�, of the period function. By
the local regularity at the inner and outer boundary, there is a neighborhood U of �0
and continuously varying neighborhoods I�(0) and I�(1), of the inner and outer bound-
ary, respectively, on which an isotopy h� as in the Definition 2.3 exists for Z� = P ′

�.

By analyticity, P ′
�0

(s) has at most a finite number of zeros, say c1, . . . , ck, in an open

neighborhood J of (0, 1) \ (I�(0) ∪ I�(1)
)
. Using the local regularity of �0 in the inte-

rior, for each i = 1, 2, . . . , k, there exists a continuously varying closed interval I�(ci)

containing ci and an isotopy h� such that equality (3) holds for all s ∈ I�(ci) and
� ∈ U. Reducing U and each I�(ci) if necessary, we can assume in addition that
I�(c1), . . . , I�(ck) are pairwise disjoint and that

P ′
�(s) �= 0 for s ∈ J

∖(
k⋃

i=1
I�(ci)

)
and � ∈ U .

On the other hand, reducing also I�(0) and I�(1) if necessary, we can assume that
I�(c1), . . . , I�(ck) do not intersect I�(0) and I�(1) neither. It remains therefore to define
the isotopy in a finite disjoint union of open intervals. In each of these intervals we
define it as an affine map whose values at the endpoints are already defined. �

The above result shows that if P� varies continuously, then in order to obtain the
bifurcation diagram it is enough to study the three possible types of local bifurcations
given in (b) and (c) of Definition 2.4. However, dealing with a family of centers such
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that the period annuli do not vary continuously, it may occur that some bifurcation
does not correspond to any of these three types. In fact this is the case of the period
function of the centers in Remark 2.2 (see [11] for details).

As we already mentioned, the local bifurcation diagram at the inner boundary is
fully understood for the quadratic centers (see Section 4) thanks to the results of
Chicone and Jacobs [4]. Let us point out that their definition of bifurcation value at the
inner boundary is not equivalent to ours. Their definition allows to describe better the
bifurcation, but its usefulness is strongly based on the fact that the period function of
a nondegenerate center can be extended analytically to the inner boundary. In general
this is not possible in the outer boundary, which is the case that we study. We want, on
the other hand, a unified definition for both boundaries because otherwise a result as
Lemma 2.7 is very difficult to obtain. This is the reason why we use here a different
definition. We point out, however, that, for the quadratic centers, the bifurcation values
at the inner boundary are the same with both definitions (see Remark 4.2).

3. Bifurcation at the outer boundary

This section is devoted to the proof of Theorem A and it is divided into four
subsections. In the first one we study the phase portrait of the dehomogenized Loud’s
systems and we focus on the shape of the period annulus of the center at the origin.
In brief, we show that, apart from a parameter subset which consists of some straight
lines, there are four different types of period annuli. We turn then to the study of
the period function in each situation. We consider the two cases in which the period
annulus is unbounded in Section 3.2, and the two cases in which it is bounded in
Section 3.3. Finally in Section 3.4 we prove Theorem A.

3.1. Study of the phase portrait

In the sequel, setting � = (D, F ), we shall denote by {X�, � ∈ R2} the family of
vector fields corresponding to the dehomogenized Loud’s systems, i.e.,

X� = y(x − 1)�x + (x + Dx2 + Fy2)�y.

For each value of �, the vector field X� has a center at the origin, whose period function
is our object of study. In order to do this, we need to determine the period annulus P� of
X� as well as its outer boundary, which is a polycycle in some compactification of R2.
Usually, one takes the Poincaré disk but, for the sake of simplicity in the computations,
we will use instead the real projective plane RP2. We consider RP2 covered by the

charts (x, y), (u, v) =
(

1
1−x

,
y

1−x

)
and (�, �) =

(
1−x
y

, 1
y

)
. The expressions of X� in
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(u, v) and (�, �) coordinates are given, respectively, by

X�(u, v) = 1

u

(
−uv�u + (−u + u2 + D(u − 1)2 + (F − 1)v2)�v

)
X�(�, �) = 1

�

((
(1 − F)� + D�3 + (D + 1)��2 − (2D + 1)��2)��

+�
(−F − (� − �)((D + 1)� − D�)

)
��

)
.

It is easy to check (see [18] for instance) that if F /∈ {0, 1, 1
2 } then the vector field X�

has a Darboux type first integral given by

H�(x, y) = (1 − x)−2F
( 1

2 y2 − q�(x)
)
, (4)

where q�(x) = a(�)x2 + b(�)x + c(�) with

a(�) := D

2(1−F)
, b(�) := D−F+1

(1−F)(1−2F)
and c(�) := F−D−1

2F(1−F)(1−2F)
. (5)

The line at infinity L∞ (with respect to the (x, y)-coordinates), the conic C� := { 1
2 y2 −

q�(x) = 0} and the line L1 := {x = 1} are invariant curves of X�. The determinant
associated to the conic C = C�, which coincides with the discriminant of q�(x), is
given by

�(�) := (D + F)(D + 1 − F)

(1 − 2F)2(1 − F)F
.

Thus, we can see that C degenerates into two lines when (D + F)(D + 1 − F) = 0.
Indeed, it is easy to check that the conic C splits into two real lines when F = −D and
D /∈ [−1, 0]. On the other hand, if F = D + 1 (respectively, F = −D ∈ (0, 1)), then
the conic C becomes two complex conjugated lines having the center (x, y) = (0, 0)

(respectively, (x, y) = (−1/D, 0)) as the unique real common point. In the other cases
the affine type of C can be determined by the sign of � and a in the following way:

• If a < 0 and � < 0 then the conic C has no real points.
• If a < 0 and � > 0 then the conic C is an ellipse.
• If a > 0 then the conic C is a hyperbola and we have two subcases depending on

the sign of �. If � > 0 then C cuts the x-axis in two points which will be denoted
in the sequel by p1 and p2 with p1 < p2. If � < 0 then the hyperbola C has no
common point with {y = 0}.

• If a = 0 then the conic C is a parabola (this only occurs when D = 0).

It is well known that every quadratic system has seven singularities (in the projective
complex domain and counting multiplicities). Taking the pairwise intersections of the
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invariant curves L1, L∞ and C we obtain five singular points. Moreover, apart from the
center at the origin (x, y) = (0, 0), we have the singular point [−1, 0, D], which, in
general, does not live on none of the invariant curves L1, L∞ or C. Now we proceed
to study in some detail each singular point of X�:

• The two points L1∩C =
{
[1, ±

√
−(D+1)

F
, 1]
}

are real when (D+1)F < 0. The linear

part of X� at these points has eigenvalues �1 = ±2F

√
−(D+1)

F
and �2 = ±

√
−(D+1)

F
.

• The two points L∞ ∩ C =
{
[1, ±

√
D

1−F
, 0]
}

are real when (1 − F)D > 0. Working

in (u, v)-coordinates, the linear part of uX� at these points has eigenvalues �1 =
∓2D

√
1−F
D

and �2 = ∓
√

D
1−F

.

• At the point L1 ∩ L∞ = [0, 1, 0] the linear part of �X� has eigenvalues �1 = −F

and �2 = 1 − F.

• At the point [−1, 0, D], with D �= 0, the linear part of X� has eigenvalues �i =
±
√

1 + 1
D

.

Fig. 4 shows the bifurcation diagram of the phase portrait of the dehomogenized
Loud’s systems. It is important to note that in each phase portrait we place the center
(0, 0) on the left of the centered invariant line L1 = {x = 1}. In addition the conic
C appears in boldface type when it is relevant. We will describe next in brief all the
bifurcations occurring in this diagram:

• Along D = −1 there is a collapse of the three singularities L1 ∩ C and [−1, 0, D].
We point out that if F > 1 then this bifurcation does not affect the period annulus.

• The bifurcation at D = 0 occurs when the three singularities L∞ ∩C and [−1, 0, D]
collapse. This bifurcation always affects the period annulus.

• The bifurcations at F = 0 and F = 1 can also be easily described. Indeed, the three
singular points L1 ∩L∞ and L1 ∩C collapse giving raise to a saddle-node at infinity,
whose strong separatrix is on L∞ when F = 0 and on L1 when F = 1. Note that
these bifurcations only affect the period annulus when D ∈ [−1, 0].

• Along F +D = 0 the conic C degenerates, but this does not affect the outer boundary
of the period annulus if F ∈ (0, 1).

• Along F = D + 1 the conic C also degenerates, but this never affects the period
annulus.

• Finally the bifurcation at F = 1/2 is more subtle because there is no confluence
of singularities. The position of the conic depends on F > 1/2 or F < 1/2 and it
“explodes” to the limit set L1 ∪ L∞ as F tends to 1/2. Note in addition that the
singular point L1 ∩ L∞ is a saddle for 0 < F < 1. In fact it can be shown that this
saddle is orbitally linearizable for F �= 1/2. In contrast, if F = 1/2 then the singular
point L1 ∩ L∞ (which belongs to the outer boundary of P� when D ∈ [−1, 0])
becomes a resonant saddle with hyperbolicity ratio equal to one. Notice, however,
that this bifurcation never affects the structure of the outer boundary of the period
annulus.
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Fig. 4. Phase portraits of the dehomogenized Loud’s systems.

Remark 3.1. The discussion above shows that the bifurcations (in the structure) of the
outer boundary of the period annulus of the center at the origin occur only on the
dotted curve in Fig. 4. Let us point out that we shall not study the period function
corresponding to these parameters.

Lemma 3.2. The family of period annuli of the center at the origin of the dehomoge-
nized Loud’s systems {X�, � ∈ R2} varies continuously.

Proof. Let
(
b(�), 0

)
be the intersection point of the outer boundary of P� with the

positive x-axis (see Fig. 4). This provides us a natural parametrization for P�. Indeed,



P. Mardešić et al. / J. Differential Equations 224 (2006) 120–171 133

notice that b(�) depends continuously on � and that X� is transverse to the segment
{(x, 0) : 0 < x < b(�)} for all � ∈ R2. It suffices therefore to consider �� : [0, 1] −→
R2 defined by means of ��(s) := (

b(�)s, 0
)
. �

As we already mentioned, in order to study the behavior of the period function near
the outer boundary of the period annulus we must treat separately the four different
types of polycycle that bound it. We gather them in two sections according to whether
the period annulus (considered as a subset of R2) is bounded or not. In Section 3.2 we
deal with the unbounded case, which is divided in two subcases: Section 3.2.1 corre-
sponds to period annuli with the outer boundary contained in C ∪L∞ and Section 3.2.2
to period annuli with the outer boundary contained in L1 ∪L∞. As a matter of fact this
last case was already treated in [13] and here, for the sake of completeness, we only
recall the result that we obtained. Finally, Section 3.3 deals with the cases in which the
period annulus is bounded. From Fig. 4 it follows that there are two possibilities for the
polycycle in the outer boundary, namely, a saddle loop or a bicycle. Let us conclude
this section pointing out that Fig. 4 does not constitute a new result (see [19,22] for
instance).

3.2. Unbounded period annulus

3.2.1. The case F > 1, F + D > 0 and D < 0.
In this subsection we study the period function of the center at the origin of X� in

case that the parameter � belongs to

U := {
(D, F ) ∈ R2 : F > 1, F + D > 0 and D < 0

}
.

We shall prove the existence of a curve �1 such that setting �2 = U ∩ {F = 2} then
the following holds:

Theorem 3.3. Let {X�, � ∈ R2} be the family of vector fields in (2) and consider the
period function of the center at the origin. Then the open set U\{�1 ∪�2} corresponds
to local regular values of the period function at the outer boundary of the period
annulus. Moreover, for these parameters, the period function is monotonous near the
outer boundary and the corresponding character is shown in Fig. 5.

To be more precise, �1 is the zero level set of an explicit function which is given
in (28). In order to draw �1 in Fig. 5 we have computed it numerically. Analytically,
among other properties that are gathered in Proposition 3.11, we have proved that �1
is the graphic of an analytic function D = G(F ).

In order to prove Theorem 3.3 we shall study the asymptotic development of the
period function near the outer boundary of P�. For the parameter values under consid-
eration (see Fig. 4), recall that the outer boundary of the period annulus of the center
is made up of the line at infinity and a branch of the conic C� = { 1

2 y2 − q�(x) = 0},



134 P. Mardešić et al. / J. Differential Equations 224 (2006) 120–171

Fig. 5. Monotonicity of the period function at the outer boundary of P�.

where q�(x) = ax2 + bx + c with the coefficients a, b, c defined in (5). For � ∈ U, the
conic has two different intersection points with y = 0, namely

p1 := −b − √
b2 − 4ac

2a
and p2 := −b + √

b2 − 4ac

2a
,

which one can verify that 0 < p1 < p2 and p1 < 1. Notice in particular that (p1, 0)

belongs to the outer boundary of the period annulus. Since one can check that X� is
transverse to {(x, 0) : 0 < x < p1}, we have a global parametrization of the set of
periodic orbits in P�. Thus, for (s, �) ∈ (0, p1) × U, we denote by P(s; �) the period
of the periodic orbit of X� passing through the point (p1 − s, 0).

Notice that one can easily normalize P(s; �) to obtain a parametrization of the period
function defined for s ∈ (0, 1) and so that the inner and outer boundary correspond
to s ≈ 0 and s ≈ 1, respectively. However, for convenience in the computations we
prefer to use the previous one instead, for which we stress that the outer boundary
corresponds to s ≈ 0.

Theorem 3.3 follows almost directly from Theorem 3.6, which gives the first non-
trivial term of the asymptotic development of Ps(s; �) at s = 0. In its statement we
use the following definitions:

Definition 3.4. Let W be an open subset of Rm. We denote by I(W) the set of germs
of analytic functions h(s; �) defined on (0, ε) × W for some ε > 0 such that

lim
s→0

h(s; �) = 0 and lim
s→0

s
�h(s; �)

�s
= 0

uniformly (on �) on every compact subset of W.
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Let us also denote by I0(W) the set of germs of analytic functions h(s; �) defined on
(−ε, ε)×W for some ε > 0 such that h(0; �) ≡ 0. Note therefore that I0(W) ⊂ I(W).

Definition 3.5. The function defined for s > 0 and � ∈ R by means of

�(s; �) =
{

s�−1−1
�−1 if � �= 1,

log s if � = 1,

is called the Roussarie–Ecalle compensator.

Let us define in addition

�(�) := 1

2(F − 1)

and introduce the covering of the parameter space U given by the open subsets

U1 := {� ∈ U : F < 3/2}, U2 := {� ∈ U : F > 3/2} and

U3 := {� ∈ U : 5/4 < F < 2}, (6)

which one can verify that correspond to �(�) > 1, �(�) < 1 and 1/2 < �(�) < 2,
respectively.

Now, with the definitions and notation introduced above, we prove the following:

Theorem 3.6. Denote

�0(�) = 2
√

2√
a + b + c

arctanh

(
2 a + b − √

b2 − 4 ac

2
√

a(a + b + c)

)
.

Then the following holds:

(a) If � ∈ U1 then P(s; �) = �0(�) + �1(�)s + sf1(s; �), where f1 ∈ I(U1) and

�1(�) = −1/
√

2a

(p2 − p1)(1 − p1)

×
{

2 −
∫ 1

0

(
u− 1

�

(
1 − p2

1 − p1
(u − 1) + 1

)1+ 1
� − 1

)
du

(1 − u)3/2

}
.
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(b) If � ∈ U2 then P(s; �) = �0(�) + �2(�)s� + s�f2(s; �), where f2 ∈ I(U2) and

�2(�) =
√

2	

a

� (p2 − p1)
�

(1 − p1)2�+1

�
(

1
2(1−F)

)
�
(

F−2
2(F−1)

) .

(c) If � ∈ U3 then P(s; �) = �0(�) + �3(�)s�(s; �) + �4(�)s + sf3(s; �), where
f3 ∈ I(U3) and the functions �3(�) and �4(�) are analytic on U3. Furthermore,
if �(�0) = 1 then

�3(�0) = − p2 − p1√
2a (1 − p1)3

.

Notice that, in the Poincaré disc, the outer boundary of the P� is a polycycle with
two hyperbolic saddles located at infinity (see Fig. 4). In addition, taking advantage
of the symmetry of the Loud’s family with respect to the x-axes, in order to prove
Theorem 3.6 it is enough to study half of the period. Consequently we must only study
the time function associated to the passage through one of these saddles. To this end
we shall use a result which appears in [13]. In that paper, given an analytic family of
vector fields in R2 having a saddle point, we studied the asymptotic development of the
time function along the union of two separatrices. Next, for the sake of completeness,
we state this result (see Proposition 3.9) and we explain the related definitions.

Let W be an open set of Rm and let {X̃�, � ∈ W } be an analytic family of vector
fields defined on some open set V of R2. Assume that each vector field X̃� has a
hyperbolic saddle p� as the unique critical point inside V. In this situation it is well
known that there exist exactly two analytic transverse invariant curves S� and T�, the
stable and unstable manifolds, passing through p� (depending also analytically on �).

We consider an analytic family of meromorphic vector fields X� proportional to X̃�
with a pole of order n > 0 along T�. We can take a coordinate system (u, v, �) on
V ×W ⊂ R2+m such that p� = (0, 0, �), S� = {(u, v, �) : u = 0} and T� = {(u, v, �) :
v = 0}. In these coordinates the family {X�, � ∈ W } can be written as

X�(u, v) = 1

vn

(
uP (u, v; �)�u + vQ(u, v; �)�v

)
, (7)

where P and Q are analytic functions such that P(u, 0; �) > 0 and Q(0, v; �) < 0 for
any (0, v, �) ∈ S� and (u, 0, �) ∈ T�. Moreover, by hypothesis, we have that

�(�) := −Q(0, 0; �)

P (0, 0; �)
> 0.

The family {X�, � ∈ W } can be thought of as a single vector field X defined on
V × W ⊂ R2+m whose trajectories are contained inside the submanifolds {� = const}.
Let 
 : I × W −→ �
 and � : I × W −→ �� be two analytic transverse sections to X
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Fig. 6. Definition of T and R in Proposition 3.9.

defined by


(s; �) = (

1(s; �), 
2(s; �); �

)
and �(s; �) = (

�1(s; �), �2(s; �); �
)

such that 
(0; �) ∈ S� and �(0; �) ∈ T�. Here I denotes a small interval of R contain-
ing 0.

We denote the Dulac and time mappings between the transverse sections �
 and ��
by R and T respectively. More precisely (see Fig. 6), if �

(
t, (u0, v0); �

)
is the solution

of X� passing through (u0, v0) at t = 0, for each s > 0 we define R(s; �) and T (s; �)

by means of the relation

�
(
T (s; �), 
(s); �

) = �
(
R(s; �)

)
. (8)

Definition 3.7. We will say that {X�, � ∈ W } verifies the family linearization property
(FLP) if there exist an open set U ⊂ R2 containing the origin and an analytic local
diffeomorphism � : U ×W → V ×W of the form �(x, y; �) = (

x +h.o.t., y +h.o.t., �
)

such that

X� = �∗
(

1

f (x, y; �)

(
x�x − �(�)y�y

))
,

where f is an analytic function on U × W.

Remark 3.8. It is easy to show that the family of meromorphic vector fields {X�, � ∈
W } defined in (7) verifies FLP if it has a Darboux first integral

H�(x, y) = f1(x, y; �)�1(�) · · · fk(x, y; �)�k(�),

where fj and �j are analytic functions on V × W and W, respectively.

Recall that H�(x, y) = (1 − x)−2F
( 1

2 y2 − q�(x)
)

is a Darboux first integral for X�
if F(F − 1)(2F − 1) �= 0, so the FLP is verified in these cases.
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In order to simplify the expressions that appear in the statement of the next result
we introduce the functions

L(u; �) := exp

(∫ u


2(0)

(
P(0, y)

Q(0, y)
+ 1

�

)
dy

y

)
,

M(u; �) := exp

(∫ u

0

(
Q(x, 0)

P (x, 0)
+ �

)
dx

x

)
,

and the covering of the parameter space W given by the open subsets

W1 :=
{
� ∈ W : � >

1

n

}
, W2 :=

{
� ∈ W : � <

1

n

}
and

W3 :=
{
� ∈ W : 1

n + 1
< � <

2

n

}
.

Proposition 3.9. Let {X�, � ∈ W } be the family of vector fields defined in (7) and
assume that it verifies FLP. Let R and T be, respectively, the Dulac map and the time
function associated to the transverse sections �
 and �� as introduced in (8). Denote

(�) = 
′
1(0)�
2(0)

�′
2(0)�1(0)�

L(0)�M
(
�1(0)

)
and �0(�) =

∫ 0


2(0)

vn−1

Q(0, v)
dv.

Then R(s; �) = (�)s� + s�f0(s; �) with f0 ∈ I(W). In addition, the time function
T (s; �) verifies the following:

(a) If � ∈ W1 then T (s; �) = �0(�) + �1(�)s + sf1(s; �), where f1 ∈ I(W1) and

�1(�) = −
′
2(0) 
2(0)n−1

Q(0, 
2(0))
+ 
′

1(0)
2(0)1/�
∫ 
2(0)

0

Qu(0, v)L(v)vn−1/�

Q(0, v)2

dv

v
.

(b) If � ∈ W2 then T (s; �) = �0(�) + �2(�)s�n + s�nf2(s; �), where f2 ∈ I(W2) and

�2(�) = 
′
1(0)�n
2(0)nL(0)�n

{
�1(0)−�n

nQ(0, 0)
+
∫ �1(0)

0

(
M(u)n

P (u, 0)
− M(0)n

P (0, 0)

)
du

u�n+1

}
.

(c) If � ∈ W3 then T (s; �) = �0(�) + �3(�)s�(s; �n) + �4(�)s + sf3(s; �), where
f3 ∈ I(W3) and the functions �3(�) and �4(�) are analytic on W3. Furthermore,
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if �(�0) = 1/n then

�3(�0) = −n
′
1(0)
2(0)nL(0)

Qu(0, 0)

P (0, 0)2 .

Proposition 3.9 constitutes the main ingredient in the proof of Theorem 3.6. However,
in order to apply it we must first perform a change of coordinates that sends each
separatrix of the saddle at infinity to a straight line. This will raise some technical
complications because the coordinate transformation that we use is singular and it
creates a line of critical points. To bypass this problem we will have to split up the
time function and to introduce an additional parameter associated to the new transverse
sections. This makes the proof more complicated than one could expect. In particular
we shall need the following result to study the remainder terms. Its proof can be found
in [13] and, for the sake of brevity, in the statement we denote I(W) and I0(W) by I
and I0, respectively (see Definition 3.4).

Lemma 3.10. Assume that a(�), k(�) and r(�) are positive analytic functions.

(a) If g(s; �) and f (s; �) belong to I0 and I, respectively, then g◦f ∈ I.

(b) If f (s; �) belongs to I (respectively I0) and � := sr (a + f ) then sk ◦ � − akskr

belongs to skrI (respectively skrI0).

(c) If f (s; �) and g(s; �) belong to I and � := sr (a + f ) then (skg)◦ � belongs to
skrI.

(d) If g(s; �) belongs to I0 then g�(s; r) ∈ I.

(e) If g(s; �) belongs to I0 then
(
s�(s; r)

)◦(s(a + g)
) = ars�(s; r) + a�(a; r)s + �

with � ∈ sI.

Proof of Theorem 3.6. Note first that, since the transformation (x, y, t) �−→ (x, −y, −t)

preserves the Loud normal form, it is enough to study half of the period. More con-
cretely, denoting the solution of X� passing through (x0, y0) at t=0 by �

(
t, (x0, y0); �

)
,

for each s ∈ (0, p1) we define T (s; �) as the minimum positive number so that
�2
(
T (s; �), (p1 − s, 0); �

) = 0.

Thus we only need to obtain the coefficients of the asymptotic development of
T (s; �) at s = 0, which involves only one passage through a saddle at infinity. Clearly
the coefficients of P(s; �) at s = 0 will follow then using that P(s; �) = 2T (s; �).

Notice now (see Fig. 7) that T (s; �) is the time function associated to the transverse
sections �1 and �2, which are given, respectively, by �1(s) = (p1 − s, 0) and �2(s) =
(−1/s, 0). In order to study T (s; �) we introduce two auxiliary transverse sections,
say ��

1 and ��
2, on the straight line y = �(p2 − x), where � ∈ (0, ε). To this end, let(

x�, �(p2 − x�)
)

be the intersection point between this straight line and the hyperbola
{ 1

2 y2 − q�(x) = 0}. We parametrize ��
1 and ��

2 by

�1
�(s) = (

x� − s , � (p2 − x� + s)
)

and �2
�(s) = (−1/s , � (p2 + 1/s)

)
,
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Fig. 7. Auxiliary transverse sections.

respectively. Let us denote the time function between �1 and ��
1 by T1(s; �, �), the

one between ��
1 and ��

2 by T2(s; �, �), and the one between ��
2 and �2 by T3(s; �, �).

Then

T (s; �) = T1
(
s; �, �

)+ T2
(
R1(s; �, �); �, �

)+ T3
(
R2(s; �, �); �, �

)
,

where R1(s; �, �) is the Poincaré mapping between �1 and ��
1 and R2(s; �, �) is the

one between �1 and ��
2.

It is well known that T1, T3 and R1 can be extended analytically to s = 0, and it is
also clear that they are analytical for (�, �) ∈ U× (−ε, ε). Hence

T1(s; �, �) = �1
0(�, �) + �1

1(�, �)s + sf1(s; �, �) with f1 ∈ I0
(
U× (−ε, ε)

)
, (9)

T3(s; �, �) = �3
1(�, �)s + sf3(s; �, �) with f3 ∈ I0

(
U× (−ε, ε)

)
, (10)

R1(s; �, �) = 1(�, �)s + sg1(s; �, �) with g1 ∈ I0
(
U× (−ε, ε)

)
. (11)

Notice moreover that T1(s; �, �) −→ 0, T3(s; �, �) −→ 0 and R1(s; �, �) −→ s as
� −→ 0. Therefore

lim
�→0

�1
0(�, �) = lim

�→0
�1

1(�, �) = lim
�→0

�3
1(�, �) = 0 and lim

�→0
1(�, �) = 1. (12)

The asymptotic developments of T2 and R2, which correspond to the passage through
a saddle at infinity, are more delicate. To obtain them we shall apply Proposition 3.9, and
to this end we must first perform a coordinate transformation that sends the separatrices
of the saddle to straight lines. We thus consider the singular change of variables given
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by

(z, w) = �(x, y) :=
(

2q�(x) − y2

2a(p2 − x)2 ,
p2 − p1

p2 − x

)
.

Setting k1 := p2 − p1 and k2 := 1/
√

2a for the sake of shortness, some computations
show that it brings (2) to the system given by the vector field

X� = 1

w

(
z P (z, w; �) �z + w Q(z, w; �) �w

)
,

where

P(z, w; �) = 2

k2

√
1 − z − w

(
k1(F − 1) + (p2 − 1)w

)

and

Q(z, w; �) = 1

k2

√
1 − z − w

(
−k1 + (p2 − 1)w

)
.

One can verify (see Fig. 8) that �
 := �(��
1) and �� := �(��

2) are in the straight line
z + w = 1 − k2

2�2. We parameterize them with the transferred parameterizations of ��
1

and ��
2. More concretely, we consider


(s; �, �) := �
(
�1
�(s)

) =
(

s(1 − k2
2�2)2

k1 + s(1 − k2
2�2)

,
k1(1 − k2

2�2)

k1 + s(1 − k2
2�2)

)

and

�(s; �, �) := �
(
�2
�(s)

) =
(

sp1 + 1

sp2 + 1
− k2

2�2 ,
sk1

sp2 + 1

)
.

Note therefore that T2(s; �, �) is precisely the time function between �
 and ��,

and that, on the other hand, the vector field X� is meromorphic on the region under
consideration. (We point out that Proposition 3.9 cannot be applied to compute T (s; �)

directly because �(�1) and �(�2) are in the straight line z + w = 1 and the vector
field X� is not meromorphic there.) Moreover, since H�

(
�−1(z, w)

)
is a Darboux first

integral of X�, from Remark 3.8 it follows that {X�, � ∈ U} is a family of vector fields
verifying FLP. Consequently we can apply Proposition 3.9 to compute the asymptotic
development of T2 at s = 0. As a matter of fact, to be precise, since the transverse
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Fig. 8. Passage through the saddle at infinity in (z, w)-coordinates.

sections depend also on �, we shall apply it to the family {X(�,�) , (�, �) ∈ U × (0, ε)}.
Thus, following the notation of Proposition 3.9, since

�(�) := −Q(0, 0; �)

P (0, 0; �)
= 1

2(F − 1)

does not depend on �, it turns out that Wi = Ui × (0, ε) where

U1 = {� ∈ U : F < 3/2}, U2 = {� ∈ U : F > 3/2} and

U3 = {� ∈ U : 5/4 < F < 2}.

In addition we can assert that

T2(s; �, �) = �2
0(�, �) + �2

1(�, �)s + sf 1
2 (s; �, �) if � ∈ U1, (13)

T2(s; �, �) = �2
0(�, �) + �2

2(�, �)s� + s�f 2
2 (s; �, �) if � ∈ U2, (14)

T2(s; �, �) = �2
0(�, �) + �2

3(�, �)s�(s; �) + �2
4(�, �)s + sf 3

2 (s; �, �)

if � ∈ U3, (15)

where f i
2 ∈ ı

(
Ui × (0, ε)

)
. Some computations show that

�2
0(�, �) =

∫ 0


2(0)

dw

Q(0, w)
=
∫ 0

1−k2
2�2

k2

(p2 − 1)w − k1

dw√
1 − w

. (16)
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Let us compute next the coefficient �2
1(�, �). From Proposition 3.9 we know that it is

given by

�2
1(�, �) = − 
′

2(0)

Q
(
0, 
2(0)

) + 
′
1(0)
2(0)1/�

∫ 
2(0)

0

Qz(0, w)L(w)

Q(0, w)2

dw

w1/�
.

One can verify that

L(w) =
(

(1 − p2)w + k1

1 − p1 − k2
2�2(1 − p2)

)2F

and

Qz(0, w)

Q(0, w)2 = k2

2(1 − w)3/2
(
(1 − p2)w + k1

) .
Consequently, using also that


′
2(0)

Q
(
0, 
2(0)

) = (1 − k2
2�2)2

k1�
(
1 − p1 − k2

2�2(1 − p2)
) and 
′

1(0)
2(0)1/� = (1 − k2
2�2)2F

k1
,

it turns out that

�2
1(�, �) = −(1 − k2

2�2)2

k1�
(
1 − p1 − k2

2�2(1 − p2)
)

+ k2(1 − k2
2�2)2F

2k1
(
1 − p1 − k2

2�2(1 − p2)
)2F

∫ 1−k2
2�2

0

G(w)

(1 − w)3/2 dw, (17)

where G(w) := w−1/�((1 − p2)w + k1
)2F−1

. Let us turn now to the computation of
�2

2(�, �), which is given by

�2
2(�, �) = 
′

1(0)�
2(0)L(0)�

{
�1(0)−�

Q(0, 0)
+
∫ �1(0)

0

(
M(z)

P (z, 0)
− M(0)

P (0, 0)

)
dz

z�+1

}
.

In this case, since one can show that M(z) ≡ 1,


′
1(0)�
2(0)L(0)� = 1

k�
1

(
k1(1 − k2

2�2)

1 − p1 − k2
2�2(1 − p2)

)2�F

and

�1(0)−�

Q(0, 0)
= −k2

k1(1 − k2
2�2)�

,
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we conclude that

�2
2(�, �) = k2k

�
1(1 − k2

2�2)2�F(
1 − p1 − k2

2�2(1 − p2)
)2�F

{
−1

(1 − k2
2�2)�

+ �
∫ 1−k2

2�2

0

(
1√

1 − z
− 1

)
dz

z�+1

}
. (18)

Concerning the coefficient �2
3(�, �), we know that if �(�0) = 1 then

�2
3(�0, �) = −
′

1(0)
2(0)L(0)
Qz(0, 0)

P (0, 0)2 .

In our situation, using that �(�0) = 1 corresponds to F = 3/2, some computations
show that

�2
3(�0, �) = −k1k2(1 − k2

2�2)3

2
(
1 − p1 − k2

2�2(1 − p2)
)3 . (19)

In order to study R2(s; �, �) we will also use (z, w)-coordinates. Notice (see Fig. 8)
that, taking the transferred parametrizations, it is precisely the Dulac map between
�(�1) and �(��

2). We point out that �(�1) is in the straight line z + w = 1. However,
in this case, this is not a problem for our purpose. Indeed, in order to study the Poincaré
mapping we can apply Proposition 3.9 with the polynomial vector field

X̃� := w√
1 − z − w

X�,

which provides the same foliation as X� and it is obviously analytic. So we can assert
that

R2(s; �, �) = 2(�, �)s� + s�g2(s; �, �), (20)

where g2 ∈ ı
(
U × (−ε, ε)

)
and 2(�, �) is an analytic function on U × (−ε, ε). For

values of � such that �(�) ≈ 1 we need more information about the remainder term in
R2. In fact, if � ∈ U3 then

s�g2(s; �, �) = sg̃2(s; �, �) with g̃2 ∈ ı
(
U3× (−ε, ε)

)
. (21)

This fact does not follow from Proposition 3.9 but it is easy to show and so, for the
sake of brevity, we do not prove it here. As we shall see later on, we do not need the
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concrete expression of 2(�, �). We shall only use that it is convergent as � −→ 0 and
this follows from its analyticity at � = 0.

We can now study the composition T3
(
R2(s; �, �); �, �

)
. Thus, on account of (10)

and (20), by applying Lemma 3.10 we can assert that

T3
(
R2(s)

) = �3
1 2 s� + s�h1 with h1 ∈ I

(
U× (0, ε)

)
. (22)

In case that � ∈ U3 we must be sharper. Since f3 ∈ I0
(
U × (−ε, ε)

)
, we have that

f3 = sf̂3 where f̂3 is an analytic function on s = 0. Hence, from (10) and (21), it
follows that

T3
(
R2(s)

) = �3
1(2s

� + sg̃2) + (2s
� + sg̃2)f3

(
2s

� + sg̃2
)

= �3
1(2s

� + sg̃2) + s(2s
�−1/2 + s1/2g̃2)

2f̂3
(
2s

� + sg̃2
)
.

Since �(�) > 1/2 for � ∈ U3, note that 2 s�−1/2 belongs to ı
(
U3×(0, ε)

)
. Consequently

the expression above shows that T3
(
R2(s)

) = �3
1 2s

� + sh̃1 with h̃1 ∈ I
(
U3× (0, ε)

)
.

Hence, using that s� = (� − 1)s�(s; �) + s, we obtain

T3
(
R2(s)

) = �3
1 2 (� − 1)s�(s; �) + �3

1 2s + sh̃1 with h̃1 ∈ I
(
U3× (0, ε)

)
. (23)

We have now all the necessary ingredients to study T (s; �). Let us consider first the
case � ∈ U1. In this case, from (11) and (13), by applying Lemma 3.10 we obtain

T2
(
R1(s)

) = �2
0 + �2

1 1s + sh2 with h2 ∈ I
(
U1× (0, ε)

)
.

Therefore, taking (11) and (22) also into account, we get

T (s; �) = �1
0 + �2

0 + (
�1

1 + �2
1 1

)
s + s

(
h2 + f1 + s�−1(�3

1 2 + h1)
)
.

Then, using that �(�) > 1 for � ∈ U1, we conclude that

T (s; �) = �1
0(�, �) + �2

0(�, �) + (
�1

1(�, �) + �2
1(�, �)1(�, �)

)
s + sh3(s; �, �)

with h3 ∈ I
(
U1× (0, ε)

)
. At this point we stress that the coefficients

�0(�) := �1
0(�, �) + �2

0(�, �) and �1(�) := �1
1(�, �) + �2

1(�, �)1(�, �)
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depend only on � because T (s; �) does not depend on �. This proves in particular
that h3 ∈ I(U1). In order to compute explicitly these coefficients we take advantage
of (12). For the first one we get

�0(�) = lim
�−→0

(
�1

0(�, �) + �2
0(�, �)

) = lim
�−→0

�2
0(�, �).

Thus, by applying the Dominate Convergence Theorem to the expression of �2
0(�, �)

given in (16) we obtain

�0(�) =
∫ 1

0

k2

(1 − p2)w + k1

dw√
1 − w

=
√

2√
a + b + c

arctanh

(
2 a + b − √

b2 − 4 ac

2
√

a(a + b + c)

)
.

The last equality above follows from direct integration and using the relation of p2, k1
and k2 with the coefficients of q�(x) = ax2 + bx + c. On the other hand, taking (12)
into account again,

�1(�) = lim
�−→0

(
�1

1(�, �) + �2
1(�, �)1(�, �)

) = lim
�−→0

�2
1(�, �).

The computation of this limit is more delicate because �2
1(�, �), which is given in (17),

contains two terms that considered separately diverge as � −→ 0. To show that these
cancel each other we proceed as follows.

�2
1(�, �) = −(1 − k2

2�2)2

k1�
(
1 − p1 − k2

2�2(1 − p2)
) + k2(1 − k2

2�2)2F

2k1
(
1 − p1 − k2

2�2(1 − p2)
)2F

×
{

2G(1)
1 − k2�

k2�
+
∫ 1−k2

2�2

0

G(w) − G(1)

(1 − w)3/2 dw

}

= (1 − k2
2�2)2

k1�
(
1 − p1 − k2

2�2(1 − p2)
) {−1 + (1 − k2

2�2)1/�(1 − k2�)(1 − p1)
2F−1(

1 − p1 − k2
2�2(1 − p2)

)2F−1

}

+ k2(1 − k2
2�2)2F

2k1
(
1 − p1 − k2

2�2(1 − p2)
)2F

∫ 1−k2
2�2

0

G(w) − G(1)

(1 − w)3/2 dw.
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Now, to compute the limit we apply L’Hôpital’s rule to the first term and the Dominate
Convergence Theorem to the second one. It can be shown in this way that

�1(�) = lim
�−→0

�2
1(�, �) = k2

k1(p1 − 1)
+ k2

2k1(1 − p1)2F

∫ 1

0

G(w) − G(1)

(1 − w)3/2 dw

= k2

2k1(p1−1)

{
2−

∫ 1

0

(
w− 1

�

(
1 − p2

1 − p1
(w − 1) + 1

)2F−1

−1

)
dw

(1 − w)3/2

}
,

and this concludes the proof of the assertion in (a).
Let us turn now to the case � ∈ U2. In this case, from (11) and (14), by applying

Lemma 3.10 we obtain that

T2
(
R1(s)

) = �2
0 + �2

2 �
1 s� + s�h4 with h4 ∈ I

(
U2× (0, ε)

)
.

The combination of (11) and (22) with the above expression shows that

T (s; �) = �1
0 + �2

0 + (
�3

1 2 + �2
2 �

1

)
s� + s�h5,

where h5 := h1 + h4 + s1−�(�1
1 + f1) is a function that belongs to I

(
U2× (0, ε)

)
. This

assertion follows from using that �(�) < 1 for � ∈ U2. Note in addition that, since
T (s; �) and s�(�) do not depend on �, the coefficients

�0(�) := �1
0(�, �) + �2

0(�, �) and �2(�) := �3
1(�, �) 2(�, �) + �2

2(�, �) 1(�, �)�(�)

depend only on �. On the other hand, since 2(�, �) is analytic at � = 0, from (12) it
turns out that

�2(�) = lim
�−→0

(
�3

1(�, �) 2(�, �) + �2
2(�, �) 1(�, �)�(�)

)
= lim

�−→0
�2

2(�, �).

Thus, by applying the Dominate Convergence Theorem to the expression of �2
2(�, �)

given in (18), one can easily show that

�2(�) = k2k
�
1

(1 − p1)2�F

{
�
∫ 1

0

(
1√

1 − z
− 1

)
dz

z�+1
− 1

}
= k2k

�
1(

1 − p1
)2�F

�
√

	 �(−�)

�
( 1

2 − �
) .

The last equality above follows from direct integration. This proves (b).
Let us study finally the case � ∈ U3. In this case, from (11) and (15), by applying

Lemma 3.10 we obtain

T2
(
R1(s)

) = �2
0 + (

�2
3 �

1

)
s�(s; �) + (

�2
3 1�(1; �) + �2

4 1
)
s + sh6
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with h6 ∈ I
(
U3× (0, ε)

)
. Therefore, taking (11) and (23) also into account, we get

T (s; �) = �1
0 + �2

0 + (
�2

3 �
1 + �3

1 2(� − 1)
)
s�(s; �)

+(�1
1 + �2

3 1�(1; �) + �2
4 1 + �3

1 2
)
s + sh7,

where h7 := f1 + h̃1 + h6 is a function that belongs to I
(
U3 × (0, ε)

)
. On the other

hand, since T (s; �) and �
(
s; �(�)

)
depend only on �, the coefficients

�0(�) := �1
0(�, �) + �2

0(�, �),

�3(�) := �2
3(�, �) 1(�, �)�(�) + �3

1(�, �) 2(�, �)
(
�(�) − 1

)
and

�4(�) := �1
1(�, �) + �2

3(�, �) 1(�, �)�
(
1(�, �); �(�)

)
+ �2

4(�, �) 1(�, �) + �3
1(�, �) 2(�, �)

do not depend on �. This implies in particular that h7(s; �, �) does not depend on �,

and so we can assert that h7 ∈ I(U3). Finally, if we consider some �0 ∈ U3 such that
�(�0) = 1, then �3(�0) = �2

3(�0, �) 1(�0, �) and consequently, from (12),

�3(�0) = lim
�−→0

�2
3(�0, �) 1(�0, �) = lim

�−→0
�2

3(�0, �).

Thus, on account of (19), it follows that

�3(�0) = k1k2

2(p1 − 1)3 .

This proves (c) and concludes the proof of the result. �

It is clear that the sign of Ps(s; �) for small positive s determines the monotonicity
of the period function near the outer boundary of the period annulus. So we need to
study the coefficients of the second monomial in the asymptotic development given in
Theorem 3.6. To this end we introduce the sets

�1 := {� ∈ U1 : �1(�) = 0},

�2 := {� ∈ U2 : �2(�) = 0},

�3 := {� ∈ U3 : �3(�) = 0 with �(�) = 1}. (24)
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One can easily verify that �2 = {� ∈ U2 : F = 2} and that �3 is empty. Fig. 5 shows
the set �1 computed numerically. We are now in position to prove the main result of
this subsection:

Proof of Theorem 3.3. Fix some �� ∈ U \ {�1 ∪�2} and note that, taking (6) and (24)
into account, there are three different situations to consider:

(a) �� ∈ U1 \ �1,

(b) �� ∈ U2 \ �2,

(c) �� ∈ U3 such that �(��) = 1.

The fact that �� is a local regular value in the cases (a) and (b) follows exactly the
same way as in the proof of Theorem 5.1 in [13]. So let us consider only the case (c),
which corresponds to the values of � ∈ U such that F = 3/2. Note first of all that,
from (c) in Theorem 3.6, we can assert that if � ∈ U3 then

Ps(s; �) = �3(�)
(
��(s; �) + 1

)+ �4(�) + sf ′
3(s; �) + f3(s; �),

where f3 ∈ I(U3). Here we used that, on account of Definition 3.5, s�s = (�−1)�+1.

On the other hand, since �(�) −→ 1 as � −→ ��, it is clear that �(s; �) −→ −∞ as
(s, �) −→ (0, ��). Consequently, using also that f3 ∈ I(U3), from the above equality
we obtain that

Ps(s; �)

��(s; �) + 1
−→ �3(�

�) as (s, �) −→ (0, ��).

Therefore, since one can easily verify that �3(��) < 0, we can assert that there exists
a neighborhood U� of �� and ε > 0 such that Ps(s; �) > 0 for all s ∈ (0, ε) and
� ∈ U�. According to (b) in Remark 2.6, this proves that �� is a local regular value.
It also shows that the period function is monotonous decreasing on the outer boundary
of P�. Indeed, P(s; �) is by definition the period of the periodic orbit of X� passing
through the point (p1 − s, 0), which approaches to the outer boundary as s decreases.

The assertions concerning the monotonicity in the cases (a) and (b) follow exactly
the same way taking into account the sign of �1(��) and �2(��), respectively. �

The rest of the subsection is devoted to show some properties of �1. We prove the
following:

Proposition 3.11. The set �1 is the graphic of an analytic function D = G(F ) defined
for F ∈ (1, 3/2) that has the following properties:

(a) −F < G(F ) < −1/2 for all F ∈ (1, 3/2),

(b) G(F ) −→ −3/2 as F ↗ 3/2,

(c) G(F ) −→ −1/2 as F ↘ 1,

(d) G(5/4) = −1.
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This result follows almost directly from Lemma 3.13. However, in order to prove
Lemma 3.13 we shall need a previous result concerning a general property of the
coefficients in Proposition 3.9.

Lemma 3.12. Under the hypothesis of Proposition 3.9, let {�k} be a sequence of
parameters in W1 (respectively W2) so that �k −→ �̂ with �( �̂ )=1/n and �3( �̂ ) �= 0.

(a) If �3( �̂ ) > 0 then �1(�k) (respectively �2(�k)) tends to −∞ as �k −→ �̂.

(b) If �3( �̂ ) < 0 then �1(�k) (respectively �2(�k)) tends to +∞ as �k −→ �̂.

Proof. We shall prove (a) and (b) for a sequence {�k} in W1 (the other case follows
exactly the same way). Notice first that, on account of �k ∈ W1, we have �(�k) > 1/n

and

T (s; �k)=�0(�k)+�1(�k)s+sf1(s; �k) with f1 ∈ I(W1). (25)

On the other hand, note that �k ∈ W3 for k large enough because �k −→ �̂ ∈ W3.

Therefore

T (s; �k)=�0(�k)+�3(�k)s�
(
s; �(�k)n

)+�4(�k)s+sf3(s; �k) with f3 ∈ I(W3).

(26)

By definition

s�
(
s; �(�k)n

) = s�(�k) n − s

�(�k)n − 1

and consequently, from (26),

T (s; �k) = �0(�k) +
(

�4(�k) − �3(�k)

�(�k)n − 1

)
s + sg(s; �k),

where

g(s; �) := f3(s; �) + �3(�)

�(�)n − 1
s�(�) n−1

is a function that belongs to I(W1). Consequently the combination of this expression
for T (s; �k) and the one in (25) shows that

�1(�k) = �4(�k) − �3(�k)

�(�k)n − 1
. (27)
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Note that, since �3 and �4 are analytic on W3,�3(�k)−→�3( �̂ ) and �4(�k)−→�4( �̂ )

as �k −→ �̂. In addition, due to �k ∈ W1, it turns out that �(�k)n − 1 ↘ 0 as
�k −→ �̂. Hence, from (27), we conclude that

lim
�k→�̂

�1(�k) = −∞ if �3( �̂ ) > 0 and lim
�k→�̂

�1(�k) = +∞ if �3( �̂ ) < 0

as claimed. �

In what follows we shall use the notation k1 = p2 − p1 and k2 = 1/
√

2a introduced
in the proof of Theorem 3.6. Let us also define �(�) by means of the relation �1(�) =

k2
2k1(p1−1)

�(�), that is,

�(�) := 2 −
∫ 1

0

(
u2(1−F)

(
(u − 1)� + 1

)2F−1 − 1
) du

(1 − u)3/2

where �(�) := 1 − p2

1 − p1
. (28)

Concerning this function we prove the following:

Lemma 3.13. If (D, F ) ∈ U1 then the following holds:

(a) �D(D, F ) < 0,

(b) �(D, F ) < 0 for D� − 1/2,

(c) �(−1, 5/4) = 0,

(d) �(D, F ) −→ 4 as (D, F ) −→ (−q, q) with 1 < q < 3/2,

(e) �(D, F ) −→ −∞ as (D, F ) −→ (q, 3/2) with −3/2 < q < 0,

(f)
�
(
D, 1 + (D + 1/2)2

)
(D + 1/2)2 −→ 4(4 − 	) as D ↗ −1/2.

Proof. Some computations show that

� = (2D + 1)
√

F(F − 1) + √
(F + D)(F − D − 1)

(2D + 1)
√

F(F − 1) − √
(F + D)(F − D − 1)

(29)

and

d�

dD
= −(2F − 1)2(

(2D + 1)
√

F(F − 1) − √
(F + D)(F − D − 1)

)2
√

F(F − 1)

(F + D)(F − D − 1)
.

Thus, from the last expression above it follows that

�D(�) = (2F − 1)
d�

dD

∫ 1

0

(
(u − 1)� + 1

u

)2(F−1)
du

(1 − u)1/2
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is negative for � ∈ U1. This proves (a). Let us turn next to the assertion in (b). Notice
first that

�(�) =
∫ 1

0

2−u−u2(1−F)
(
(u−1)�+1

)2F−1

(1−u)3/2 du =
∫ 1

0

2−u
(
h(u; �)+1

)
(1−u)3/2 du,

(30)

where

h(u; �) :=
(

(u − 1)� + 1

u

)2F−1

.

On the other hand one can verify that �� − 1 for D� − 1/2. Taking this into account
it is easy to show that

(u − 1)� + 1

u
>

2 − u

u
> 1 for u ∈ (0, 1).

Therefore, since F > 1, we have that

h(u; �) >

(
2 − u

u

)2F−1

>
2 − u

u

and this, on account of (30), proves (b). The assertion in (c) is straightforward because
�(−1, F ) = 0 and direct integration yields

�(−1, 5/4) = 2 −
∫ 1

0

u−1/2 − 1

(1 − u)3/2 = 0.

To show (d) note first that �(−q, q)= 1. Thus, if (D, F )−→(−q, q) with 1 < q < 3/2,

then

�(D, F ) −→ 2 +
∫ 1

0

du√
1 − u

= 4.

Here we apply the Dominate Convergence Theorem and to do so it is necessary that
1 < q < 3/2. In order to prove (e) we shall apply Lemma 3.12 to the results obtained
in Theorem 3.6. To this end notice first that the parameter �̂ := (q, 3/2) satisfies
�( �̂ ) = 1. Hence (c) in Theorem 3.6 shows that

�3( �̂ ) = k1k2

2(p1 − 1)3 ,
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which is negative because 0 < p1 < 1 and ki > 0. Thus, if we consider any sequence
{�k} in U1 with �k −→ �̂ then, by applying Lemma 3.12, it follows that

�1(�k) −→ +∞ as �k −→ �̂. (31)

Recall at this point that, by definition,

�1(�) = k2

2k1(p1 − 1)
�(�). (32)

One can verify moreover that if (D, F ) −→ (q, 3/2) with −3/2 < q < 0, then

k2

2k1(p1 − 1)
−→ 18

6q + 3 −√
9 − 12q − 12q2

(
2q3

12q2 + 12q − 9

)1/2

< 0.

Hence, on account of (31) and (32), we get that �(D, F )−→−∞ as (D, F )−→(q, 3/2).

This proves (e). Finally, to show (f ) we shall take advantage of the expression of �(�)

given in (30). Let us define

g(u; D) := h
(
u; (D, 1 + (D + 1/2)2)).

The idea will be to use the Taylor’s development of g(u; D) at D = −1/2. We point
out, however, that the term

√
F − 1 in �, see (29), makes that �

(
D, 1 + (D + 1/2)2

)
is not smooth enough at D = −1/2. Nevertheless, this will not be a problem for our
purpose because we only need to study its behavior as D ↗ −1/2, and it is clear that
this function coincides on (−1/2 − ε, −1/2] with an analytic function at D = −1/2.

In the sequel, when we study g(u; D), we will use this analytic function instead of the
original �

(
D, 1 + (D + 1/2)2

)
. Keeping this in mind, to avoid cumbersome notation

we shall maintain the name of the functions. Now, since one can check that

g(u; D) = 2 − u

u
+ 1

2

d2

dD2 g
(
u; �D

)
(D + 1/2)2 with �D ∈ (D, −1/2),

from (30) we obtain that

�
(
D, 1 + (D + 1/2)2

)
(D + 1/2)2 = −1

2

∫ 1

0
u

d2

dD2 g
(
u; �D

) du

(1 − u)3/2 . (33)

Lengthy computations, which are not included here for the sake of brevity, allow to
verify that, for all D ∈ (−1/2 − ε, −1/2],∣∣∣∣ u

(1 − u)3/2

d2

dD2 g(u; D)

∣∣∣∣ < f (u) with f ∈ L1((0, 1)
)
.
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Therefore, by applying the Dominate Convergence Theorem, from (33) it turns out that

�
(
D, 1 + (D + 1/2)2

)
(D + 1/2)2 −→ −1

2

∫ 1

0
u

d2

dD2 g
(
u; −1/2

) du

(1 − u)3/2 as D ↗ −1/2.

Finally, since one can check that

d2

dD2 g
(
u; −1/2

) = 4

u

(
(2 − u) ln

(2 − u

u

)
+ 4(u − 1)

)
and

−2
∫ 1

0

(
(2 − u) ln

(2 − u

u

)
+ 4(u − 1)

)
du

(1 − u)3/2 = 4(4 − 	),

the result follows. �

Proof of Proposition 3.11. Recall that, by definition,

�1(�) = k2

2k1(p1 − 1)
�(�).

Then, since one can verify that k2
2k1(p1−1)

does not vanish on U1, it suffices to study
{� ∈ U1 : �(�) = 0}. Notice first that, by applying the Implicit Function Theorem,
(a) and (c) in Lemma 3.13 show that this set is the graphic of an analytic function
D = G(F ) with G(5/4) = −1. The fact that G is defined for all F ∈ (1, 3/2) and that
−F < G(F ) < −1/2 follow from (b) and (d) in Lemma 3.13. On the other hand, by
applying (e) in Lemma 3.13 we can assert that G(F ) −→ −3/2 as F ↗ 3/2. So it
only remains to prove (c). To this end note that (f ) in Lemma 3.13 implies that

�
(
D, 1 + (D + 1/2)2) > 0 for all D ∈ (−1/2 − ε, −1/2).

In addition, from (d) in Lemma 3.13, we have that �(−1/2, F ) < 0 for all F ∈
(1, 1 + ε). Consequently, by Bolzano’s Theorem, in any neighborhood V of (D, F ) =
(−1/2, 1) there exists some � ∈ U1 ∩ V such that �(�) = 0. This shows (c) and
concludes the proof of the result. �

3.2.2. The case 0 < F < 1 and −1 < D < 0.
The aim of this subsection is only to recall the results that we obtain in [13] con-

cerning the period function of the center at the origin of X� in case (see Fig. 9) that
� belongs to

W := {
(D, F ) ∈ R2 : −1 < D < 0 and 0 < F < 1

}
.
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Fig. 9. Monotonicity of the period function at the outer boundary of P�.

Setting

�3 := {
� ∈ W : D = − 1

2 , F ∈ ( 1
2 , 1

)}
and �4 := {

� ∈ W : F = 1
2

}
,

from Theorem 5.1 and Proposition 5.2 in [13] it follows the next result:

Theorem 3.14. Let {X�, � ∈ R2} be the family of vector fields in (2) and consider
the period function of the center at the origin. Then the open set W \ {�3 ∪ �4}
corresponds to local regular values of the period function at the outer boundary of
the period annulus. Moreover, for these parameters, the period function is monotonous
near the outer boundary and the corresponding character is shown in Fig. 9.

3.3. Bounded period annulus

In this section we study the period function of the center at the origin for the
parameter values � such that P� is bounded. Notice that among these parameters there
are two main situations to consider (see Fig. 4). The first one are those parameters
such that the outer boundary of P� is a saddle loop, which corresponds to

M := {
� ∈ R2 : D < −1 and F + D < 0

} ∪ {� ∈ R2 : D > 0 and F + D > 0
}
.

The second one are those parameters such that it is a bicycle, which corresponds to

N := {
� ∈ R2 : −1 < D < 0 and F < 0

} ∪ {� ∈ R2 : D > 0 and F + D < 0
}
.
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Fig. 10. Parameters corresponding to bounded period annulus.

Now, with these definitions (see Fig. 10), our goal is to prove the following result:

Theorem 3.15. Let {X�, � ∈ R2} be the family of vector fields in (2) and consider the
period function of the center at the origin. Then the open set M ∪ N corresponds to
local regular values of the period function at the outer boundary of the period annulus.
Moreover, for these parameters, the period function is monotonous increasing near the
outer boundary.

Proof. Let us begin by recalling some facts about the normal form of a family of
vector fields with a hyperbolic saddle. So let us consider a C∞-family of vector fields
{X� : � ∈ W } with a hyperbolic saddle p�. Let the eigenvalues of X� at p� be �1(�)

and �2(�), with �2 < 0 < �1, and let r(�) := − �2(�)

�1(�)
be its ratio of hyperbolicity. Fix

some �0 and assume first that r(�0) is rational, i.e., r(�0) = p
q

with (p, q) = 1. Then,

for each k ∈ N, there exists a Ck-diffeomorphism � such that, in some neighborhood
of p� and for � ≈ �0,

X� = �∗
(

1

f (u; �)

(
x�x − yg(u; �)�y

))
, (34)

where u = xpyq and

f (u; �) = 1
�1(�)

+ �1(�)u + · · · + �nk
unk ,

g(u; �) = r(�) + �1(�)u + · · · + �nk
unk .

If r(�0) /∈ Q then the above results holds with �i (�) ≡ 0 and �i (�) ≡ 0 for all i.
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Let us first take a parameter �� such that the period annulus is bounded by a saddle
loop (i.e., � ∈ M). Notice that, according to Remark 3.1, there is a neigbourhood U�

of �� such that the saddle loop persists and it is the outer boundary of P� for all
� ∈ U�. Moreover in Section 3.1 we showed that the saddle is located at (− 1

D
, 0) and

has eigenvalues

�1(�) =
√

1 + 1

D
and �2(�) = −

√
1 + 1

D
,

and so r(�) ≡ 1. Since in particular r(��) = 1, there exists a local diffeomorphism �
such that it holds (34) with p = q = 1. We introduce two transversal sections �
 and
�� given by s �−→ �(s, 1) and s �−→ �(1, s), respectively. Let us also define P(s; �)

as the period of the periodic orbit of X� passing through �(s, 1). We split it as

P(s; �) = T1(s; �) + T2(s; �),

where T1 is the time function for −X� from �
 to �� and T2 is the time function for
X� from �
 to �� (i.e., the passage through the saddle). To be more precise, T1(s; �)

is the minimum positive time necessary so that the solution of −X� passing through
�(s, 1) ∈ �
 reaches ��. Note that T1(s; �) is a smooth function on s = 0. The time
function associated to the passage through a saddle with r(��) = 1 has already been
studied. Indeed, Lemma 2 in [1] shows that

T2(s; �) = − 1

�1(�)
log s − �1(�)s�

(
s; r(�)

)+ �(s; �), (35)

where � is a C1 function at (s, �) = (0, ��) and 1-flat at s = 0 for all �. In our
situation �

(
s; r(�)

) = log s because in fact r(�) ≡ 1. From the above expression we
obtain that

s
d

ds
T2(s; �) −→ −1/�1(�

�) as (s, �) −→ (0, ��).

This shows, since T1 is smooth at s = 0, that sPs(s; �) −→ −1/�1(��) as (s, �) −→
(0, ��). Therefore, due to �1(��) > 0, we can assert that there exists ε > 0 such that
Ps(s; �) < 0 for all s ∈ (0, ε) and � ≈ ��. Consequently, by (b) in Remark 2.6, ��

is a local regular value of the period function at the outer boundary. We can conclude
in addition, noting that �(s, 1) approaches to the saddle loop as s decreases, that the
period function is increasing near the outer boundary.

Let us consider next a parameter �� such that the outer boundary of P�� is a
bicycle (i.e., � ∈ N). As before, according to Remark 3.1, the bicycle persists and it
is the outer boundary of P� for � ≈ ��. We shall take advantage of the symmetry of
the Loud’s systems with respect to {y = 0} to study only the passage through one of
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the saddles. For instance, let us consider the saddle in {y > 0}. Recall (see Section 3.1)
that this saddle is located at

p� :=
(

1,

√
− (D+1)

F

)
with �1(�) =

√
− (D+1)

F
and �2(�) = 2F

√
− (D+1)

F
,

and so its ratio of hyperbolicity is r(�) = −2F. We take now a local diffeomorphism �
that conjugates X� for � ≈ �� with its normal form, which depends on r(��) ∈ Q

or r(��) /∈ Q. As before, we shall take two transversal sections �
 and �� given by
s �−→ �(s, 1) and s �−→ �(1, s), respectively. Denote by P(s; �) the period of the
periodic orbit of X� passing through �(s, 1). We decompose it as

P(s; �) = 2T1(s; �) + 2T2(s; �) + 2T3
(
R(s; �); �

)
,

where T1 is the time function for −X� from �
 to {y = 0}, R and T2 are, respectively,
the Dulac map and the time function for X� from �
 to �� and, finally, T3 is the time
function for X� from �� to {y = 0}. It is clear that T1 and T3 are smooth functions
on s = 0. On the other hand, it is well known (see [14,16] for instance) that

R(s; �) = sr(�)
(
(�) + �1(s; �)

)
where �1 ∈ I

(
U�
)

for some neighborhood U� of ��. Concerning T2, if r(��) /∈ Q then the normal
form (34) is linear and one can easily verify that T2(s; �) = − 1

�1(�)
log s. The expres-

sion is not so easy when r(��) = p
q
. The case p = q = 1 is treated in [1] and, as

we already mentioned, one obtains the expression given in (35). In the general case,
following the same approach it can be shown (see [8, Proposition 23]) that

T2(s; �) = − 1
�1(�)

log s − 1
p

�1(�) sp�
(
sp; q

p
r(�)

)+ �2(s; �),

where �2 is C1 at (s, �) = (0, ��) and 1-flat at s = 0 for all �. Some computations
show that

d
ds

T2(s; �) = − 1
�1(�)

1
s

− �1(�) sp−1
(

q
p

r(�) �
(
sp; q

p
r(�)

)+ 1

)
+ �′

2(s; �).

Therefore we can assert that in both cases, r(��) rational or irrational, it holds

s
d

ds
T2(s; �) −→ −1/�1(�

�) as (s, �) −→ (0, ��).

Finally this implies that sPs(s; �) −→ −2/�1(��) as (s, �) −→ (0, ��) because T1 and
T3 are smooth at s = 0 and �1 ∈ I

(
U�
)
. Exactly as in the saddle loop case, this proves
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that �� is a local regular value at the outer boundary and that the period function is
monotonous increasing there. �

Remark 3.16. From the proof of Theorem 3.15 it follows that if � ∈ M ∪ N then the
period function of X� tends to +∞ as we approach to the outer boundary
of P�.

3.4. Proof of the main result

Proof of Theorem A. The fact that the parameters in R2 \ {�B ∪�U} are local regular
values follows from the application of Theorems 3.3, 3.14 and 3.15 in the corresponding
regions that cover. These theorems also show the assertions in (a) and (b) concerning the
monotonicity near the outer boundary. Consider now a parameter �0 ∈ �B and note that
any neighborhood of �0 intersects DB\�U and IB\�U. Consequently, any neighborhood
of �0 contains two parameters �+ and �− such that the respective period functions have
different monotonicity in the outer boundary. (Here we use, recall Remark 2.5, that the
character increasing or decreasing does not depend on the particular parametrization of
the period function used.) This clearly implies that �0 is a local bifurcation value at
the outer boundary and so the result is proved. �

4. Bifurcation in the interior

In this section we determine some local bifurcation values of the period function
in the interior of the period annulus of the dehomogenized Loud’s systems (2). To be
more precise, we prove that there are three parameter values, namely

L1 =
(

−3

2
,

5

2

)
, L2 =

(
−11 + √

105

20
,

15 − √
105

20

)
and

L3 =
(

−11 − √
105

20
,

15 + √
105

20

)
, (36)

such that at each Li there exists a germ of analytic curve corresponding to this type
of bifurcation. We describe moreover the relative position of this curve with respect
to other bifurcation curves. The result is based on the work of Chicone and Jacobs
in [4].

Setting � = (D, F ) as usual, let us denote by P(s; �) the period of the periodic
orbit of system (2) passing through the point (s, 0). Note that P(s; �) is a well defined
analytic function for (s, �) ∈ (0, ε)×R2 because the center is nondegenerate. Moreover,
since the eigenvalues of the linear part of X� at the origin are ±i, it can be extended
analytically to s = 0 by setting P(0; �) := 2	. We can thus consider the Taylor
expansion of P(s; �) at s = 0,

P (s; �) = 2	 + P2(�)s2 + P3(�)s3 + P4(�)s4 + P5(�)s5 + P6(�)s6 + · · · . (37)
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The coefficients Pk(�), which are real polynomials in the parameters of the system,
are called the period constants of the center. For instance (see [4]),

P2(D, F ) = 	

12
(10D2 + 10DF − D + 4F 2 − 5F + 1),

P4(D, F ) = 	

1152

(
1540D4 + 4040D3F + 1180D3 + 4692D2F 2 + 1992D2F

+ 453D2 + 2768DF 3 + 228DF 2 + 318DF − 2D + 784F 4

− 616F 3 − 63F 2 − 154F + 49
)

.

Chicone and Jacobs prove in [4] that the ideals generated by the period constants verify
that

(P2) = (P2, P3)�(P2, P4) = (P2, P4, P5)�(P2, P4, P6) = (Pi, i ∈ N). (38)

They also show that the ideal (P2, P4, P6) determines the points

S1 = (−1/2, 1/2), S2 = (0, 1), S3 = (0, 1/4), S4 = (−1/2, 2),

which correspond to the four nonlinear quadratic isochronous centers. The ideal (P2, P4)

determines, apart from the four isochronous centers, the three weak centers Li given
in (36). Note in particular that these seven parameter values are over the conic �C :=
{� ∈ R2 : P2(�) = 0} (see Fig. 11).

In [4] the authors use a notion of bifurcation which differs from the one introduced in
Section 2. Indeed, they say that k critical periods bifurcate from the center corresponding
to the parameter �0 if for every ε > 0 and every neighborhood U of �0 there is a point
�1 ∈ U such that the equation P ′(s; �1) = 0 has k solutions in the interval (0, ε). With
this definition and the notation introduced above we can now summarize their result
concerning the dehomogenized Loud’s systems:

Theorem 4.1 (Chicone–Jacobs). The maximal number of critical periods bifurcating
from the center at the origin of the dehomogenized Loud’s family is two. In addition,

(a) If � /∈ �C then no critical period bifurcates from the center.
(b) If � ∈ �C \ {L1, L2, L3} then at most one critical period bifurcates from the center

and there are perturbations with exactly one critical period.
(c) If � ∈ {L1, L2, L3} then at most two critical periods bifurcate from the center and

there are perturbations with exactly one and exactly two critical periods.

Remark 4.2. It is clear, on account of (37), that if � /∈ �C then the monotonicity
of P(s; �) for s > 0 small enough is given by the sign of P2(�). Note that �C is a
Jordan curve. We denote the bounded and unbounded component of R2 \�C by DC and
IC, respectively. One can check then that P2(�) is positive for � ∈ IC and negative
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Fig. 11. The ellipse �C = {� ∈ R2 : P2(�) = 0}.

for � ∈ DC. Thus, if � belongs to IC (respectively, DC) then the period function
of X� is monotonous increasing (respectively, decreasing) at the inner boundary (i.e.,
the center). Therefore, according to (a) in Remark 2.6, the parameters in �C are local
bifurcation values of the period function at the inner boundary. On the other hand,
since the expansion in (37) is uniform with respect to �, from (b) in Remark 2.6 we
can assert that any parameter � /∈ �C is a local regular value of the period function
at the inner boundary. In short, the regular and bifurcation values at the center are the
same with the definition in [4] and Definition 2.4.

One can easily verify that �C = {� ∈ R2 : P2(�) = 0} and {� ∈ R2 : P4(�) = 0} are
analytic curves that intersect transversally at each Li. We shall prove next the following
result.

Theorem 4.3. For each i = 1, 2, 3 there exist a neighborhood Ui of Li and an analytic
curve �i which is tangent to �C at Li such that the arc �i ∩ {� ∈ Ui : P4(�) < 0}
corresponds to local bifurcation values of the period function in the interior. Moreover
this arc is inside {� ∈ R2 : P2(�) > 0}.

Proof. To study the period function near the center it is more convenient to parametrize
the periodic orbits by means of the first integral H�(x, y) − H�(0, 0). (Recall that H�
is given in Section 3.1.) This will eliminate the rather artificial property that only the
even coefficients in (37) are significant, which is due to the fact that each periodic
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orbit intersects twice the x-axis. So for each h > 0 denote by P̂ (h; �) the period of
the periodic orbit of X� inside the energy level {H�(x, y)−H�(0, 0) = h}. Thus, since
one can verify that

h = H�(s, 0) − H(0, 0) = s2

2
+ (1 + D + 2F)

s3

3
+ (1 + D + F)(1 + 2F)

s4

4
+ · · · ,

from (37) it follows that P̂ (h; �) = 2	 + Q0(�)h + Q1(�) h2

2 + Q2(�) h3

3 + · · · with

Q0(�) = 2P2(�),

Q1(�) = 8P4(�) − 4(1 + D + F)(1 + 2F)P2(�),

Q2(�) = 24P6(�) mod
(
P2(�), P4(�)

)
. (39)

It is clear moreover that the critical periods coincide with the positive zeros of the
function

Z(h; �) := P̂h(h; �) = Q0(�) + Q1(�)h + Q2(�)h2 + · · · . (40)

Since P2(Li) = P4(Li) = 0, from (39) and using also the expression for P6 given
in [4], it follows that Q2(Li) = 24P6(Li) > 0 for each i = 1, 2, 3. One can also verify,
taking (39) into account again, that the gradients ∇Q0(Li) and ∇Q1(Li) are linearly
independent for each i = 1, 2, 3. From now on let us only consider L1 for the sake of
simplicity in the exposition.

By applying the Weierstrass Preparation Theorem, there exist a neighborhood U
of L1, two analytic functions a0 and a1 with ai : U −→ R and a positive analytic
function K : (−ε, ε) × U −→ R such that

Z(h; �) = K(h; �)
(
h2 + a1(�)h + a0(�)

)
. (41)

Accordingly, if K(h; �) = k0(�) + k1(�)h + o(h) then k0(L1) > 0 and, from (40),

a0(�)k0(�) = Q0(�) and a0(�)k1(�) + a1(�)k0(�) = Q1(�). (42)

So it turns out that a0(L1) = a1(L1) = 0. Therefore

∇Q0(L1) = k0(L1)∇a0(L1) and ∇Q1(L1) = k1(L1)∇a0(L1) + k0(L1)∇a1(L1),

and we can thus assert that the gradients ∇a0(L1) and ∇a1(L1) are linearly independent.
Consequently �(�) := (

a0(�), a1(�)
)

is a local diffeomorphism between U and some
neighborhood V of (0, 0). We define �1 as the preimage by � of the analytic curve
{(a0, a1) ∈ V : a2

1 − 4a0 = 0}. Note in particular that L1 = �−1(0, 0) belongs to �1.



P. Mardešić et al. / J. Differential Equations 224 (2006) 120–171 163

On the other hand, since �C ∩ U = {� ∈ U : Q0(�) = 0} is the preimage by � of
{(a0, a1) ∈ V : a0 = 0}, we conclude that �1 is tangent to �C at L1.

Now we shall prove, recall Definition 2.4, that any parameter in �1 ∩ {� ∈ U :
P4(�) < 0} is a local bifurcation value of the period function in the interior. To this
end fix some �� ∈ �1 ∩ U with P4(��) < 0 and define h� := − a1(��)

2 . Observe that if
� ∈ �1 then

8P4(�) = Q1(�) + 2(1 + D + F)(1 + 2F)Q0(�)

= a1(�)k0(�) + a0(�)
(
k1(�) + 2(1 + D + F)(1 + 2F)k0(�)

)
= a1(�)

{
k0(�) + 1

4 a1(�)
(
k1(�) + 2(1 + D + F)(1 + 2F)k0(�)

)}
.

Here we use (39) in the first equality, (42) in the second one and that � ∈ �1 in the
third one. Therefore, since k0(L1) > 0 and a1(L1) = 0, the above equality shows that
P4(�) and a1(�) have the same sign for � ≈ L1. Thus, shrinking the neighborhood
U of L1 if necessary, we have that h� > 0. Consider now any neighborhood U� of
��. Due to �� ∈ �1, there exist �̄ ∈ U� such that a2

1(�̄) − 4a0(�̄) > 0. Hence (41)
implies that Z

(−a1(�̄)/2; �̄
)

< 0. Note also that Z(h; ��) > 0 for h �= h�. Therefore,

since − a1(�̄)
2 −→ h� as �̄ −→ ��, it turns out that relation (3) cannot be verified

in any neighborhood of ��. So �� is a local bifurcation value in the interior because
Definition 2.4 is not fulfilled for c = h�. Finally, from (39) and (42) and taking �� ∈ �1
into account,

2P2(�
�) = a0(�

�)k0(�
�) = a1(�

�)2k0(�
�)/4

and this implies that P2(��) > 0. The proof is completed. �

Remark 4.4. In fact the preceding proof provides a stronger result than Theorem 4.3.
Namely, that for each i = 1, 2, 3 there exists a neighborhood Ui of Li and a local ana-
lytic equivalence �i : Ui −→ Vi between the local bifurcation diagrams of the families
P̂h(h; �) with � ∈ Ui and C(h; a) := h2 + a1h + a0 with a ∈ Vi for h ∈ (0, ε).

On the other hand it is also possible to obtain the asymptotic expansion of the curves
�i . To do so it is enough to find the expansion of the functions a0(�) and a1(�) in
terms of the coefficients Qk(�) and substitute them into the equation a2

1 − 4a0 = 0. In
this way one can obtain for instance the second-order expansion of the curve �1 at the
point L1 = (−3/2, 5/2),
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5. Existence of critical periods

In this section we determine two subsets of the parameter space such that the cor-
responding period function has at least one critical period and at least two critical
periods, respectively. We shall use the notation DB and IB, introduced in Section 1,
for the bounded and unbounded components of R2 \ �B, and the notation DC and IC,

introduced in Remark 4.2, for the bounded and unbounded components of R2 \�C. Let
us note that D and I stand for decreasing and increasing, respectively.

Theorem 5.1. Consider a parameter �0 inside IC ∩ DB or DC ∩ IB. If �0 /∈ �U then
the period function of X�0

has at least one critical period.

Proof. Let us prove for instance the assertion concerning IC∩DB (the other one follows
exactly the same way). So consider some �0 ∈ IC ∩DB \�U and let P�0

: (0, 1) −→ R

be a parametrization of the period function of X�0
. Then, on account of Remark 4.2,

we have that P ′
�0

is positive near s = 0 because �0 ∈ IC. On the other hand, using
that �0 ∈ DB, by applying Theorem A it follows that P ′

�0
is negative near s = 1.

Therefore, by Bolzano’s Theorem, we can assert that there exists s0 ∈ (0, 1) such that
P ′

�0
(s0) = 0. �

Consider now the subsets U, W, M and N introduced in Section 3 and let {P� :
(0, 1) −→ R, � ∈ R2} be any parametrization of the period function. It follows then
that L(�) := lims−→1 P�(s) is a well defined function on U ∪ W ∪ M ∪ N \ �4, where
�4 is the segment represented in Fig. 9. Indeed, Theorem 3.6 shows that

L(�) = 2
√

2√
a + b + c

arctanh

(
2 a + b − √

b2 − 4 ac

2
√

a(a + b + c)

)
if � ∈ U.

Next, Proposition 5.2 in [13] shows that L(�) = 	√
F(D+1)

if � ∈ W \ �4 and, finally,

Remark 3.16 shows that L(�) = +∞ if � ∈ M ∪ N. Some easy computations, that are
not included here for the sake of brevity, show that the set

{� ∈ U ∪ W \ �4 : L(�) − 2	 = 0}

together with the points (−3/4, 1) and (−1/2, 1/2) and the segment {0}×[1/4, 1] form
a Jordan curve, say �0 (see Fig. 12). We can thus consider the bounded and unbounded
components of R2 \ �0, which we denote by J− and J+, respectively. The subscripts
are chosen in this way because one can verify that L(�) − 2	 is negative for � ∈ J−
and positive for � ∈ J+. With this notation we obtain the following result:

Theorem 5.2. Consider a parameter �0 inside IC ∩ IB ∩ J− or DC ∩ DB ∩ J+. If
�0 /∈ �U then the period function of X�0

has at least two critical periods.
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Fig. 12. Numerical drawing of the regions in Theorem 5.1 (left) and Theorem 5.2 (right).

Proof. Let us prove for instance the assertion concerning IC ∩ IB ∩ J− (the other
one follows exactly the same way). Fix �0 /∈ �U and consider a parametrization
P�0

: (0, 1) −→ R of the period function of X�0
. Then, using that the eigenvalues of the

linear part of X�0
are ±i, it follows that lims−→0 P�0

(s) = 2	. We have in addition,
recall Remark 4.2, that P�0

is increasing near s = 0 because �0 ∈ IC. Then, since
lims−→1 P�0

(s) < 2	 due to �0 ∈ J−, there exists s̄ ∈ (0, 1) such that P�0
(s̄) = 2	

and P ′
�0

(s̄)�0. Thus, since P ′
�0

is positive near s = 0 and, on account of �0 ∈ IB,

also near s = 1 by Theorem A, we conclude that there exist s1 ∈ (0, s̄) and s2 ∈ [s̄, 1)

such that P ′
�0

(si) = 0. �

Unfortunately it is very difficult to provide an explicit and simple analytical descrip-
tion of the regions in Theorems 5.1 and 5.2. We prefer instead to make a numerical
drawing of them using the exact analytic expressions that define the curves �B, �C,

and �0. The picture on the left in Fig. 12 shows several regions, which can be clearly
observed, with at least one critical period. The picture on the right shows two regions,
one of them very tiny, with at least two critical periods. Both regions corresponds to
the set IC ∩ IB ∩ J−, the other one seems to be empty. We refer here to the result of
Chicone and Dumortier in [3]. They proved that there exists some D� ≈ −1.47 such
if � ∈ (D�, −1.4) × {2} then the period function of X� has at least one critical point.
Observe in Fig. 12 that this is the horizontal segment in the boundary of the biggest
component of IC ∩ IB ∩ J−. Their results follows from the fact that this segment is
inside IC ∩ J−.
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6. Conjectures and open problems

In this section we explain how we come to the conjecture posed in the introduction
and we comment on various steps that should be done in order to prove it. Some of
them seem feasible, while others seem out of reach for the moment.

6.1. Geometrical picture

Consider the parametrization of the set of periodic orbits in the period annulus that
provides the first integral H� given in (4). Let us assume that we normalize it in
order that h = 0 corresponds to the center (i.e., the inner boundary) and h = 1 to the
polycycle (i.e., the outer boundary). Then the parametrization of the period function
P(h; �) that we obtain is defined on (0, 1) for all � ∈ R2. Recall (see Section 4) that
it can be extended analytically to h = 0 by setting P(0; �) := 2	 and that

P ′(h; �) = Q0(�) + Q1(�)h + Q2(�)h2 + · · · for h ≈ 0.

Let M ⊂ [0, 1] × R2 be the set of points (h, �) verifying P ′(h; �) = 0 for h ∈
[0, 1) and extended to h = 1 by continuity using an asymptotic development at the
polycycle. We conjecture that M is a smooth surface for h �= 1 and that it is fibered by
simple closed curves Mh given by {� ∈ R2 : P ′(h; �) = 0} for each fixed h ∈ [0, 1).

This last condition is equivalent to require that �P ′(h;�)

�D
and �P ′(h;�)

�F
do not vanish

simultaneously. Thus M0 is the ellipse �C in Fig. 11 and M1 should correspond to the
local bifurcation values at the outer boundary, that we conjecture to be the curve �B in
Theorem A together with the segment {0}× [0, 1/2]. In fact the strange kidney-shaped
curve that appears in the numerical bifurcation diagram of Chicone and Jacobs (see
Fig. 1) would correspond approximately to some curve Mh with h ≈ 1. The curves that
correspond to local bifurcation values of the period function in the interior are obtained
by the projection of M on the �-plane. More precisely, these curves would be given
as envelopes of the family {Mh, h ∈ [0, 1]}. We obtained our conjectural bifurcation
diagram by trying to interpolate a continuous family of curves Mh starting at �C for
h = 0 and ending for h = 1 at our conjectural bifurcation diagram at the polycycle.
Fig. 13 shows two intermediate curves Mh and Mh′ with 0 < h < h′ < 1. Note that
every curve Mh must pass through S1, S2, S3 and S4, the parameters corresponding to
the four isochronous centers of the family. On the other hand, according to [4], Q0(�),

Q1(�) and Q2(�) generate the ideal of the coefficients of P ′(h; �) at h = 0. This gives
that for � ≈ Si and h ≈ 0 the family of curves Mh is approximately of the form of the
pencil Q0(�)+Q1(�)h = 0. Since the curves Q0(�) = 0 and Q1(�) = 0 are transverse
at S2, S3 and S4, it follows that, in a neighborhood of these three parameters and at
least for h small, the curves Mh look like a pencil of straight lines passing through Si.

At the other isochronous center S1, since Q0(�) = 0 and Q1(�) = 0 have quadratic
contact, the curves Mh look like a pencil of parabolas tangent to �C. Consider finally
the curves �i passing through the three weak centers Li that we obtain in Theorem 4.3.
From Remark 4.4 it follows that, in a neighborhood of each Li, the curves Mh are
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Fig. 13. The intermediate curves Mh.

tangent to �i for h ≈ 0 and that these curves correspond to parameters in which two
critical periods collapse disappearing in the interior. In other words, near each Li and
for h ≈ 0 the curves �i are double bifurcation curves in the interior. We conjecture that
this behavior holds for the entire curve �i and that they separate the regions with two
critical periods from the region in which the period function is globally monotonous
increasing. Since these bifurcation curves �i begin at the weak centers Li ∈ �C, which
correspond to double bifurcations at the inner boundary, we presume that they end at
three special points in the curve �B ∪ ({0} × [0, 1/2]), which would play the role of
double bifurcation parameters at the outer boundary (see Fig. 3).

6.2. Bifurcation at the outer boundary

Our main result determines two sets �B and �U such that the parameters in �B
are local bifurcation values of the period function at the outer boundary and the ones
in R2 \ (�B ∪ �U) are local regular values. The character of the parameters in �U
remains unspecified in our work. The first natural problem that raises is to determine
the character of the parameters in �U. As we already mention, we conjecture that
they are all regular values except for the segment {0} × [0, 1/2], whose conjectural
bifurcation is described below.
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The set �U is stratified as a union of open segments and a few points at the
intersection of them. Probably one has to treat first the open segments and next the
points (higher codimension strata). Our main tool, Proposition 3.9, does not apply
along some curves of �U because the singular points at infinity of the polycycle are
saddle-nodes or resonant nonlinearizable saddles. It seems reasonable to think that an
analogue of Proposition 3.9 can be developed in all these cases and that one could
determine the behavior of the period function at the polycycle in a neighborhood of
these curves. Next, a specific study should be done for each of the codimension two
points.

Our study of the bifurcation diagram of the period function does not deal with higher-
order bifurcation parameters. The so called weak centers of order one and two that
appear in the study of the period function near the center (see [4]) have a counterpart
near the polycycle. The determination of these parameters and their study requires
the knowledge of at least one more coefficient in the asymptotic expansion of the
period function near the polycycle. There is no theoretical obstacle in doing so, but
the technicalities seem prohibitive. Once these parameters are determined, using the
derivation-division process as in the study of Chebyshev systems (see [12] for instance),
one should be able to prove the equivalence of the local bifurcation at the outer
boundary with some polynomial model.

Let us say a few words about the study at D = 0. In this case the polycycle in
the boundary of the period annulus has a degenerate singularity at infinity. Blowing-
up this singularity and applying a still unpublished generalization of Proposition 3.9,
we hope to obtain the beginning of the asymptotic expansion of the period function
P(h; �) at the outer boundary. It seems feasible to prove in this way that the segment
{0} × (0, 1/2) consists of local bifurcation values at the outer boundary. On the other
hand, we have a polynomial family of functions that we think is a good model for
the family P ′(h; D, F) near S3 = (0, 1/4). To be more precise, we conjecture that the
families

Z(h; D, F) = P ′(h; D, F), h ∈ [0, 1), (D, F ) ∈ R2,

Ẑ(h; D̂, F̂ ) = (F̂ + D̂ − F̂ D̂) h2 + (D̂F̂ − 2F̂ − D̂ − D̂2) h + F̂ ,

h ∈ [0, 1], (D̂, F̂ ) ∈ R2,

have locally equivalent bifurcation diagrams near the points (0; 0, 1/4) and (0; 0, 0)

respectively. By this equivalence the curve �C would correspond to {F̂ = 0}, {D = 0}
to {D̂ = 0} and the curve �2 to the curve defined by F̂ 2+D̂2−2F̂ D̂+2D̂+2F̂ +1 = 0.

(Note that D̂2
(
F̂ 2 + D̂2 − 2F̂ D̂ + 2D̂ + 2F̂ + 1

)
is the discriminant of Ẑ(h; D̂, F̂ )

with respect to h.) Furthermore the intermediate curves Mh = {Z(h; D, F) = 0} would
correspond to the hyperbolic branches M̂h = {Ẑ(h; D̂, F̂ ) = 0}. In Fig. 14 we show
the bifurcation diagram of this polynomial model, which consists of the straight lines
D̂ = 0 and F̂ = 0 together with the curve that joins the points (−1, 0) and (0, −1),

and we draw the curves M̂h for h = i/10, i = 1, . . . , 9.
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Fig. 14. Conjectured polynomial model near D = 0.

6.3. Bifurcation in the interior

The study of the local bifurcation values of the period function in the interior is
equivalent to the study of the behavior of the zeros of P ′(h; �) for h ∈ (0, 1). Here we
assume again that h is, up to a normalization, the energy of the first integral H� given
in (4). In order to study these zeros one hopes to apply methods which proved successful
for the abelian integrals. However, in this case the situation is more complicated for two
reasons. The first one is that the first integral is not rational but only of Darboux-type.
The methods used for abelian integrals have not yet been successfully adapted to this
situation despite several efforts [9,21]. The second reason is that in the usual setting
of the abelian integrals, the parameters enter linearly in the study as linear coefficients
of the form that one integrates. In our situation the dependence on the parameters is
highly nonlinear.

Due to the form of the first integral it can be verified that the complex fibers
{H�(x, y) = h} given by a fixed (h, �) are generically of infinite genus. This suggests
complicated study unless, for some reason (the symmetry of the system for instance),
one can project to some smaller space. The study of asymptotic cycles probably plays
some role too.

Let us finally refer a method developed in [6]. The authors obtain a general formula
for the derivative of the period function that can be applied to determine the critical
periods that persists after the perturbation of an isochronous center. This formula can
be viewed as an analogous of the first Melnikov function used to study limit cycles. As
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an example of application they study the isochronous center S2 = (0, 1). Proposition 5
in [6] shows that for each closed interval I inside (0, 1) there exists a neighborhood U
of S2 such that if �0 ∈ U then P(h; �0) has at most one critical period in I and
that this critical period exists only in the case 1−F0

D0
> 3. (Observe in Fig. 12 that this

region is precisely the “linear approximation” at S2 of the region in Theorem 5.1.) This
implies, since one can also verify that the critical period is simple, that in a punctured
neighborhood of S2 there are no local bifurcation values of the period function in the
interior.
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[12] P. Mardešić, Chebyshev Systems and the Versal Unfolding of the Cusp of Order n, Travaux en

cours, vol. 57, Hermann, Paris, 1998.
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