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In this paper a three parameter family of planar differential
systems with homogeneous nonlinearities of arbitrary odd degree
is studied. This family is an extension to higher degree of Loud’s
systems. The origin is a nondegenerate center for all values of
the parameter and we are interested in the qualitative properties
of its period function. We study the bifurcation diagram of this
function focusing our attention on the bifurcations occurring at the
polycycle that bounds the period annulus of the center. Moreover
we determine some regions in the parameter space for which the
corresponding period function is monotonous or it has at least one
critical period, giving also its character (maximum or minimum).
Finally we propose a complete conjectural bifurcation diagram of
the period function of these generalized Loud’s centers.
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1. Introduction and statement of the results

The present paper deals with planar polynomial ordinary differential systems and we study the
qualitative properties of the period function of centers. Recall that a critical point p of a planar dif-
ferential system is a center if it has a punctured neighborhood that consists entirely of periodic orbits
surrounding p. The largest neighborhood with this property is called the period annulus of the center
and in what follows it will be denoted by P . The period function assigns to each periodic orbit in P
its period. If the period function is constant then the center is called isochronous. The study of the
period function is a nontrivial problem and questions related to its behavior have been extensively
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